Medical Polyurethane Covered by Diglyme Plasma Polymer

Article Preview

Abstract:

Plasma polymerized diglyme (pp-diglyme) is a promising class of biomedical materials due to hydrophilic features when deposited under excitation by RF low power. In order to reach this goal this paper deals with plasma polymerization of diethylene-glycoldimethyl-ether (diglyme here after) by RF-excited plasmas under power ranging from 5 to 20 W and pressure of 6.6 Pa. Films were deposited on glass and aqueous polyurethane dispersion substrates (PUD). For the values of RF used in this paper, film thickness varied from 51 nm to 64 nm. Such films were deposited on flexible biocompatible polyurethane that is not resistant to acids and bases as plasma polymerized diglyme. The recovering of these materials with pp-diglyme films let them with a resistant biocompatible feature that is appropriate for use in aggressive environments. The contact angle measurements show the variation from 56° to 64° for a surface energy which varies from 68 mJ/m2 to 59 mJ/m2, respectively. The FTIR data show that the main functional groups in the polymeric film structure are C-H (3000 cm-1 to 2900 cm-1), C-O-C and C-O (1200 cm-1 to 900 cm-1) similar to the polyethylene oxide (PEO) structure. The refractive index results show a variation from 1.58 to 1.63.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-93

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. d'Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato, F. Arefi-Konsari (Eds. ), Advanced Plasma Technology, Weinheim, Germany: Wiley-VCH, Weinheim, (2008).

Google Scholar

[2] Y. Kawai, H. Ikegami, N. Sato, A. Matsuda, K. Uchino, M. Kuzuya, A. Mizuno (Eds. ), Industrial Plasma Technology, Wiley-VCH, Weinheim, (2010).

DOI: 10.1002/9783527629749

Google Scholar

[3] B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons (Eds. ), Biomaterials Science: An Introduction to Materials in Medicine, second ed., Academic Press, New York, (2004).

Google Scholar

[4] R. J. Zdrahala, I. J. Zdrahala: J. Biomater. Appl. Vol. 14 (1999), p.67.

Google Scholar

[5] d'Agostino, P. Favia, C. Oehr, M. R. Wertheimer: Plasma Process and Polym. Vol. 2 (2005), p.7.

Google Scholar

[6] R. Hippler, H. Kersten, M. Schmidt, K. H. Shoenbach (Eds. ) Low Temperature Plasmas: Fundamentals, Technologies and Techniques, Wiley-VCH, Weinheim, (2008).

Google Scholar

[7] H. Biederman (Ed. ) Plasma Polymer Films, Imperial College Press, London, (2004).

Google Scholar

[8] Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen: Spectrochim. Acta B Vol. 57 (2002), p.609.

Google Scholar

[9] P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang: Mat. Sci. Eng. R. Vol. 36 (2002), p.143.

Google Scholar

[10] R.J. Shul, S.J. Pearton (Eds. ) Handbook of Advanced Plasma Processing Techniques, Springer, Berlin, (2000).

Google Scholar

[11] R. d'Agostino, P. Favia, F. Fracassi (Eds. ) Plasma Processing of Polymers, NATO ASI series E: Applied Sciences vol. 346, Kluwer Academic Publishers, Dordrecht, (1997).

Google Scholar

[12] A. Fridman, Plasma Chemistry, Cambridge University Press, New York, (2008).

Google Scholar

[13] N.A. Alcantar, E.S. Aydil, J.N. Israelachvili: J. Biomed. Mat. Res. Vol. 51 (2000), p.343.

Google Scholar

[14] P. Favia, R. d'Agostino: Surf. Coat. Technol. Vol. 98 (1998), p.1102.

Google Scholar

[15] S. K. Hendricks, K. Kwok, M. Shen, T. A. Horbett, B. D. Ratner, J. D. Bryers: J. Biomed. Mat. Res. Vol. 50 (2000), p.160.

Google Scholar

[16] E. Sardella, R. Gristina, G.S. Senesi, R. d'Agostino, P. Favia: Plasma Process. and Polym. Vol. 1 (2004), p.63.

Google Scholar

[17] E. Sardella, P. Favia, R. Gristina, M. Nardulli, R. d'Agostino: Plasma Process. Polym. Vol. 3 (2006), p.456.

Google Scholar

[18] G. Cicala, M. Creatore, P. Favia, R. Lamendola, R. d'Agostino: Appl. Phys. Lett. Vol. 75 (1999), p.37.

Google Scholar

[19] C. Oehr, M. Müller, B. Elkin, D. Hegemann, U. Vohrer: Surf. Coat. Technol. Vols. 116-119 (1999), p.25.

Google Scholar

[20] H. Biederman, D. Slavínská: Surf. Coat. Technol. Vol. 125 (2000), p.371.

Google Scholar

[21] F.C.H. Pinto, A.S. Cunha, G.A. Pianetti, E. Ayres, R.L. Oréfice, G.R. Silva: Journal of Nanomaterials (2011), p.1.

Google Scholar

[22] R.P. Mota, E.C. Rangel, N.C. Cruz, P.A. Faria, W.H. Schreimer: Thin Solid Films Vol. 473 (2005), p.259.

Google Scholar

[23] M.A. Algatti, R.P. Mota, P.W.P. Moreira Júnior, R.Y. Honda, M.E. Kayama, K.G. Kostov, Study of RF-excited Diethylene Glycol Dimethyl Ether Plasmas by Mass Spectrometry, paper presented on 12th European Plasma Conference, Bologna, Italy, (2012).

DOI: 10.1088/1742-6596/406/1/012016

Google Scholar

[24] T.C.A.M. Azevedo, M.A. Algatti, R.P. Mota, R.Y. Honda, M.E. Kayama, K.G. Kostov, R.S. Fernandes, N.C. Cruz, E.C. Rangel: Journ. Phys: Conf. Series Vol. 167 (2009), p.012053.

DOI: 10.1088/1742-6596/167/1/012053

Google Scholar

[25] M.A. Algatti, R.P. Mota, R.Y. Honda, M.E. Kayama, K.G. Kostov, R.S. Fernandes, T.C.A.M. Azevedo, N.C. Cruz: Eur. Phys. J. D Vol. 54 (2009), p.325.

DOI: 10.1140/epjd/e2009-00043-7

Google Scholar