A Facile Method for Improving the Process of Porous Anodic Aluminum Oxide Film Preparation

Article Preview

Abstract:

A new and facile method for improving the procedure of anodic aluminum oxide (AAO) film preparation was presented, which was based on an electrochemical detachment procedure. The detachment and pore-opening were performed just through one step in a solution of HClO4 and C2H5OH at a voltage of 40V. The as-obtained AAO film was characterized by scanning electron microscopy (SEM) and scanning probing microscopy (SPM). The process of detachment and pore-opening was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

627-630

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Keller, M.S. Hunter, D. L Robinson, J. Electrochem. Soc. 100 (1953) 411.

Google Scholar

[2] S. Wernick, R. Pinner and P.G. Sheasby, The surface Treatment and Finishing of Aluminum and its Alloys, Finishing Association, Teddington, (1987).

Google Scholar

[3] S. Ihm, E. Ruckenstein , Ind. Eng. Chem. Process Design Dev. 17 (1978) 100.

Google Scholar

[4] G. Patermarakis, C. Pavlidou, J. Catal. 147 (1994) 140.

Google Scholar

[5] G. Wiessmeier, D. Honicke, J. Micromechan. Microeng. 6 (1996) 285.

Google Scholar

[6] T. Xu, R. Piner, R. Ruoff, Langmuir 19 (2003) 1443.

Google Scholar

[7] S. Iijima, Nature 354 (1991) 56.

Google Scholar

[8] A.P. Alivisatos, Science 271 (1996) 933.

Google Scholar

[9] C.R. Martin, Science 226 (1994) (1961).

Google Scholar

[10] A.M. Mrales and C.M. Lieber, Science 279 (1998) 208.

Google Scholar

[11] D.W. Wang, and H.J. Dai, Angew. Chem., Int. Ed. 41 (2002) 4783.

Google Scholar

[12] T.J. Trentler, K.M. Hichman, S.C. Goel, A. M Viano., P.C. Gibbons., W.E. Buhro, Science 270 (1995) 1791.

Google Scholar

[13] J. Yu, J.C. Yu, W. Ho, L. Wu, and X. Wang, J. Am. Chem. Soc. 126 (2004) 3422.

Google Scholar

[14] K.G. Shattuck, B. Yilmaz, J. Warzywoda, A. Sacco. Jr., Micropor. Mesopor. Mater. 88 (2006) 56.

Google Scholar

[15] N. Stein, M. Rommelfangen, V. Hody, L. Johann., J.M. Lecuire, Electrochim. Acta. 47 (2002) 1811.

Google Scholar

[16] G.E. Thompson, Thin Solid Films 297 (1997) 192.

Google Scholar

[17] H. Masuda, M. Satoh, Jpn. J. Appl. Phys. 35 (1996) L126.

Google Scholar

[18] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Adv. Mater. 11 (1999) 482.

Google Scholar

[19] N. Itoh, K. Kato, T. Tsuji, M. Hongo, J. Menbr. Sci. 117 (1996) 189.

Google Scholar

[20] T.T. Xu, F.T. Fisher, L.C. Brinson, R.S. Ruoff, Nano Lett. 3 (2003) 1135.

Google Scholar

[21] K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gosele, Nano Lett. 2 (2002) 677.

Google Scholar

[22] S.C. Costel, M.P. Jean, W. Travis, M. Corrado, J. Gerard, E.W. Jean, F.M. Anna, and P. Didier, Nano Lett. 5 (2005) 675.

Google Scholar

[23] A. Mozalev, S. Magaino, H. Imai, Electrochim Acta 46 (2001) 2825.

Google Scholar

[24] Y. Piao, H. Lim, J.Y. Chang, W. Lee, H. Kim, Electrochim Acta 50 (2005) 2997.

Google Scholar

[25] R.C. Furneaux, W.R. Rigby, A.P. Davidson, Nature 337 (1989) 147.

Google Scholar

[26] T. Xu, G. Zangari, R.M. Metzger, Nano Lett. 2 (2002) 37.

Google Scholar

[27] H. de Li Lira, R. Paterson, J. Membr. Sci. 206 (2002) 375.

Google Scholar

[28] J.H. Yuan, F.Y. He., D.C. Sun, and X.H. Xia, Chem. Mater. 16 (2004) 1841.

Google Scholar

[29] D.H. Qin, M. Lu, H.L. Li, Chem. Phys. Lett. 350 (2001) 51.

Google Scholar