Quality Control Methods of Al2O3 Based Ceramic Injection Molding Raw Materials

Article Preview

Abstract:

In the illuminant industry, for producing arc tube parts for high intensity discharge lamps the applied method is the ceramic injection molding. The ceramic arc tube parts are made of high purity alumina powder. By producing ceramic parts, one of the most critical step is to optimizing the injection molding process, [1] but first of all we need to know the properties of injection molding raw material, because later the molding process will be optimized for this material, to decrease the amount of cracked ceramics.For producing ceramic arc tube parts (plugs), there are used two different major components for producing injection molding raw material (feedstock): high purity alumina powder as the main component, and an organic paraffin wax as a binder material. It is expressly important to know the material, physical and chemical properties of these components, since mainly these have affect on the homogenity of feedstock, and therefore on the quality of end product. [3]In this research, both of the main components and the moldable raw material was investigated by visual, physical, chemical and thermal methods. As most important and main statement, the researchers found that the dynamic viscosity of the injection molding raw material depends on the used mixer equipment and the applied deformation velocity.Applied analitycal methods were laser granulometry, differential thermal analysis, and rheological analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. C. Matsuddy, Ceramic injection molding, Chapman and Hall, (1995).

Google Scholar

[2] B. Hausernova, L. Marcanikova, Rheological characterization of powder injection molding using feedstock based on aluminum oxide and multicomponent water-soluble polymer binder, Proceedings of Recent Advances in Fluid Mechanics and Heat & Mass Transfer, (2011).

DOI: 10.1002/pen.21928

Google Scholar

[3] V. A. Krauss, E. N. Pires, A. N. Klein, Rheological properties of alumina injection feedstocks, Materials Research, 8, 2 (2005) 187-189.

DOI: 10.1590/s1516-14392005000200018

Google Scholar

[4] Z. S. Rak, New trends in powder injection molding. Powder Metallurgy and Metal Ceramics, 38, (1999) 126-132.

DOI: 10.1007/bf02676037

Google Scholar

[5] W. C. J. Wei, R. Y. Wu, S. J. Ho, Effects of pressure parameters on alumina made by powder injection molding, Journal of the European Ceramic Society, 20 (2000) 1301-1310.

DOI: 10.1016/s0955-2219(99)00295-2

Google Scholar

[6] H. Q. Yin, C. C. Jia, X. H. Qu, Micro powder injection molding—large scale production technology for micro-sized components, Science in China Series E: Technological Sci., 51 (2) (2008) 121-126.

DOI: 10.1007/s11431-008-0023-y

Google Scholar

[7] W. H. Gitzen, Alumina as a ceramic material, The American Ceramic Society, 11 (1970) 68-78.

Google Scholar

[8] G. L. Messing, W. McCauley, K. S. Mazdiyasni, R. A. Haber, Advances in ceramic, ceramic powder science, The American Ceramic Society, 21 (1987) 198-207.

Google Scholar

[9] F. Filser, L. J. Gauckler, Keramische Werkstoffe, Kapitel 4: 4 Beispiele für strukturkeramische Werkstoffe, ETH-Zürich, Department Materials, (2006).

Google Scholar

[10] J. Tamásné Csányi, Alumínium-oxid porkerámiák alakadási technológiai paramétereinek optimalizálása, különös tekintettel a mechanikai tulajdonságokra és a mikroszerkezetre, PhD értekezés, Miskolc, (2007).

Google Scholar

[11] S. Shiegeyuki, Handbook of advanced ceramics, Amsterdam, Elsevier. 1. (2003) 365-369.

Google Scholar

[12] J. Enrique, E. Ochandio, M. F. Gazulla, Chemical analysis, in engineered materials handbook, ASM International, Materials Park, OH. 4 (1997) 125-138.

Google Scholar

[13] J. E. Funk, D. R. Dinger, Particle Packing, Part 2. Review of particle packing of polydisperse particle system, Interceram, 41 (3), (1992) 176-179.

Google Scholar

[14] F. Stringer, S. Mende, Nanomilling in stirred media mills, Chemical Engineering Science 60 (2005) 4557-4565.

DOI: 10.1016/j.ces.2005.02.057

Google Scholar

[15] W. Paukert, Material properties in fine grinding, Int. J. Miner. Process. 74 (2004) 3-17.

Google Scholar

[16] H. Barth, Modern methods of particle size Analysis, Wiley-Interscience, New York, (1985).

Google Scholar

[17] T. Allen, Particle size measurement, Wiley-Interscience, New York, (1981).

Google Scholar

[18] S. Serkowski, M. Müller, Vacuum granulation of ceramic powders – Device and ability, Journal of Materials processing Technology 5 (2005) 458-471.

DOI: 10.1016/j.jmatprotec.2005.04.065

Google Scholar

[19] S. Lowell, J. Shields, Powder surface area and porosity, Chapman and Hall, New York, (1984).

Google Scholar

[20] L. Cotica, F. Paesano, High energy ball-milled (Fe2O3) (Al2O3) system: A study on milling time effects, Journal of Alloys and Compound, 24 (2005) 45-54.

Google Scholar

[21] B. C. Matsuddy, Influence of powder characteristics on the rheology of ceramic injection molding mixtures, Fabrication Sci., 3, Proc. Brit. Ceram. Soc., (1983) 117-137.

Google Scholar

[22] M. J. Edirisinghe, J. R. G. Evans, Rheology of ceramic injection molding formulations, Ceram. Trans. J. 86 (1987) 18-23.

Google Scholar

[23] T. Tanaka, Injection molding of alumina, Yogyo-Kyokai-shi, 93 (1985) 572-576.

Google Scholar

[24] M. J. Cima, J. Lewis, Binder distribution in ceramic greenware during thermolysis, New York, (1989).

Google Scholar

[25] J. Csányi, Rheological characteristics of alumina powders in dry pressing technology, Építőanyag, 61 (1), (2009) 6-10.

DOI: 10.14382/epitoanyag-jsbcm.2009.2

Google Scholar