[1]
X.H. Wang, Y.J. Shi, C.Y. Shao, W. Xue, T. Wen, Effect of high sulfur and high acid value crude oil temperature on corrosion resistance of 1Cr5Mo steel, Transactions of Materials and Heat Treatment. 34 (2013) 167-171.
Google Scholar
[2]
D.Z. Li, W.K. Ling, G.X. Chen, P.Q. Zhao, C.A. Wu, Y.A. Li, Status of Development of corrosion inhibitor for atmospheric-vacuum distillation unit and prospect, Corrosion & Protection in Petrochemical Industry. 26(2009) 8-10.
Google Scholar
[3]
K. Wang, C.G. Zhai, Y. Ni, L.H. Feng, L.M. Wu, L.Y. Huang, The application of low-temperature-inhibitor in corrosion control for CDU overhead, Science & Technology in Chemical Industry. 16(2008) 44-47.
Google Scholar
[4]
X.H. Wang, Y. Wei, C.Y. Shao, Y.J. Shi, W. Xue, J.F. Zhu, Study on corrosion behavior of the 304 stainless steel in the heavy oil with high salt, high sulfur and high acid value, Applied Mechanics and Materials. 252(2013) 271-275.
DOI: 10.4028/www.scientific.net/amm.252.271
Google Scholar
[5]
N. Du, W.M. Tian, Q. Zhao, S.B. Chen, Pitting Corrosion dynamics and mechanisms of 304 stainless steel in 3. 5% NaCl solution, Acta Metallurgica Sinica. 48(2012) 807-814.
DOI: 10.3724/sp.j.1037.2012.00005
Google Scholar
[6]
J. X Liao, Y.M. Jiang, W.W. Wu, C. Zhong, J. Li, Influence of SO42- in aqueous solution containing Cl- on the critical pitting corrosion temperature of 316 stainless steel, Acta Metallurgica Sinica. 42(2006) 1187-1190.
Google Scholar
[7]
R.C. Newman, H.S. Lsaace, B. Alman, Effects of sulfur compounds on the pitting behavior of type 304 stainless steel in near-neutral chloride solutions, Corrosion. 38(1982) 261-265.
DOI: 10.5006/1.3577348
Google Scholar
[8]
D. Gopi, S. Manimozhi, K.M. Govindaraju, P. Manisankar, S. Rajeswari, Surface and electrochemical characterization of pitting corrosion behavior of 304 stainless steel in ground water media, Applied Electrochemistry. 37(2007) 439-449.
DOI: 10.1007/s10800-006-9274-0
Google Scholar
[9]
Y. Tsutsumi, A. Nishikata, T. Tsuru, Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions, Corrosion Science. 49(2007) 1394-1407.
DOI: 10.1016/j.corsci.2006.08.016
Google Scholar
[10]
Y.Z. Lin, D.J. Yang, Corrosion and corrosion control principle, China Petrochemical Press, Peking, (2007).
Google Scholar
[11]
X.H. Qu, C.C. Xu, G.C. Lv, H.D. Cheng, Corrosion behaviors of 304 stainless steel in low hardness cooling water containing Cl-, SO42- and RP-98H water treatment agent, Journal of Chinese Society for Corrosion and Protection. 29(2009) 187-190.
Google Scholar
[12]
O. Yepez, Influence of different sulfur compounds on corrosion due to naphthenic acid, Fuel. 84(2005) 97-104.
DOI: 10.1016/j.fuel.2004.08.003
Google Scholar
[13]
W. Zhang, Mechanism, factors and control method of Naphthenic acid corrosion in oil refining system, Materials Protection. 43(2010) 41-44.
Google Scholar
[14]
M.F. Wang, G.D. Li, N. Du, Effect of surface roughness on initial pitting corrosion behavior of 304 stainless steel, Failure Analysis and Prevention. 7(2012) 86-90.
Google Scholar
[15]
C.N. Cao, Principle of corrosion electrochemistry, third ed., Chemical Industry Press, Peking, (2008).
Google Scholar
[16]
H.H. Ge, G.D. Zhou, W.Q. Wu, The spontaneous passivation of stainless steel in simulated cooling water and the influence of sulfide, Acta Physico-chimica Sinica. 19(2003) 403-407.
Google Scholar