Multi-Scale Polyimide/Carbon Fibers Hybrid Filters for Hot Gas Filtration

Article Preview

Abstract:

Increasing air pollution caused mainly by exhaust emission has become a serious concern for public health. In order to efficiently control the exhaust emission from the origin, hot gas filtration is required in many industries, such as thermal power regeneration, metal refining/recycling, and biomass/coal gasification. This study aimed to develop a hybrid filter composed with ultrafine fibrous polyimide (PI) filtration layers and carbon woven fabric supporting layers for hot gas filtration. Uniform PI ultrafine fibers around 200 nm with small pores about 2.2 μm were electrospun on carbon fabrics supporting layers to serve as the filtration layer. During filtration test, NaCl aerosols (0.3 mm), which mimicked PM 2.5 particles were accumulated on the top of filtration layer and formed dust cake, but limited aerosols were observed on the carbon fabric supporting layers. It was proved that PI fiber mats played the key role in filtration. The filtration efficiency could be maintained above 95% after 9 min and reached 99.4 %. This research proved that the multi-scale polyimide/carbon fibers hybrid filters possessed the potential to serve as filtration media in bag filters for hot gas filtration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

464-469

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Finley, Hot gas filtration: diesel – how prepared is the filtration industry?, Filtration & Separation. 43 (2006) 16-20.

DOI: 10.1016/s0015-1882(06)70863-1

Google Scholar

[2] S.D. Sharma, M. Dolan, A.Y. Ilyushechkin, K.G. McLennan, T. Nguyen, D. Chase, Recent developments in dry hot syngas cleaning processes, Fuel. 89 (2010) 817-826.

DOI: 10.1016/j.fuel.2009.05.026

Google Scholar

[3] E.H. Tanabe, P.M. Barros, K.B. Rodrigues, M.L. Aguiar, Experimental investigation of deposition and removal of particles during gas filtration with various fabric filters, Separation and Purification Technology. 80 (2011) 187-195.

DOI: 10.1016/j.seppur.2011.04.031

Google Scholar

[4] A. Larbot, M. Bertrand, S. Marre, E. Prouzet, Performances of ceramic filters for air purification, Separation and Purification Technology. 32 (2003) 81-85.

DOI: 10.1016/s1383-5866(03)00062-5

Google Scholar

[5] R.C. Brown, A. Thorpe, Glass-fibre filters with bimodal fibre size distributions, Powder Technology. 118 (2001) 3-9.

DOI: 10.1016/s0032-5910(01)00288-1

Google Scholar

[6] T.J. Phelps, A.V. Palumbo, B.L. Bischoff, C.J. Miller, L.A. Fagan, M.S. McNeilly, R.R. Judkins, Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification, Journal of microbiological methods. 74 (2008).

DOI: 10.1016/j.mimet.2007.08.005

Google Scholar

[7] W. Tanthapanichakoon, M. Hata, K. -h. Nitta, M. Furuuchi, Y. Otani, Mechanical degradation of filter polymer materials: Polyphenylene sulfide, Polymer Degradation and Stability. 91 (2006) 2614-2621.

DOI: 10.1016/j.polymdegradstab.2006.05.005

Google Scholar

[8] B.H. Park, M. -H. Lee, S.B. Kim, Y.M. Jo, Evaluation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements, Applied Surface Science. 257 (2011) 3709-3716.

DOI: 10.1016/j.apsusc.2010.11.116

Google Scholar

[9] M. Lupión, F.J. Gutiérrez Ortiz, B. Navarrete, V.J. Cortés, Assessment performance of high-temperature filtering elements, Fuel. 89 (2010) 848-854.

DOI: 10.1016/j.fuel.2009.04.016

Google Scholar

[10] S. Fotovati, H. Vahedi Tafreshi, A. Ashari, S.A. Hosseini, B. Pourdeyhimi, Analytical expressions for predicting capture efficiency of bimodal fibrous filters, Journal of Aerosol Science. 41 (2010) 295-305.

DOI: 10.1016/j.jaerosci.2010.01.002

Google Scholar

[11] A. Podgórski, A. Bałazy, L. Gradoń, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters, Chemical Engineering Science. 61 (2006) 6804-6815.

DOI: 10.1016/j.ces.2006.07.022

Google Scholar

[12] S.A. Hosseini, H.V. Tafreshi, 3-D simulation of particle filtration in electrospun nanofibrous filters, Powder Technology. 201 (2010) 153-160.

DOI: 10.1016/j.powtec.2010.03.020

Google Scholar

[13] J. Wang, S.C. Kim, D.Y.H. Pui, Figure of Merit of Composite Filters with Micrometer and Nanometer Fibers, Aerosol Science and Technology. 42 (2008) 722-728.

DOI: 10.1080/02786820802249133

Google Scholar

[14] S. Lingaiah, K. Shivakumar, Electrospun high temperature polyimide nanopaper, European Polymer Journal. 49 (2013) 2101-2108.

DOI: 10.1016/j.eurpolymj.2013.04.030

Google Scholar

[15] D. Chen, R. Wang, W.W. Tjiu, T. Liu, High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers, Composites Science and Technology. 71 (2011) 1556-1562.

DOI: 10.1016/j.compscitech.2011.06.013

Google Scholar

[16] S. Jiang, G. Duan, J. Schöbel, S. Agarwal, A. Greiner, Short electrospun polymeric nanofibers reinforced polyimide nanocomposites, Composites Science and Technology. 88 (2013) 57-61.

DOI: 10.1016/j.compscitech.2013.08.031

Google Scholar

[17] C. Qin, J. Wang, S. Cheng, X. Wang, L. Dai, G. Chen, Fluorescent performance of electrospun polyimide web mixed with hemicyanine dye, Materials Letters. 63 (2009) 1239-1241.

DOI: 10.1016/j.matlet.2009.02.038

Google Scholar

[18] S.S. Homaeigohar, K. Buhr, K. Ebert, Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration, Journal of Membrane Science. 365 (2010) 68-77.

DOI: 10.1016/j.memsci.2010.08.041

Google Scholar

[19] S. -Y. Tsou, H. -S. Lin, P. -J. Cheng, C. -L. Huang, J. -Y. Wu, C. Wang, Rheological aspect on electrospinning of polyamide 6 solutions, European Polymer Journal. 49 (2013) 3619-3629.

DOI: 10.1016/j.eurpolymj.2013.07.031

Google Scholar