Study of Calcium Phosphate (OCP) Electrodeposition Process on Elektron 21 Magnesium Alloy Surface

Article Preview

Abstract:

Contribution deals with evaluation of the electrodeposition process of octacalcium phosphate layer on the surface of Elektron 21 magnesium alloy. The octacalcium phosphate coating (OCP) was electrochemically deposited in a solution containing 0.167 M CaCl2 and 0.1 M NH4H2PO4. The formation of calcium phosphate was divided into several stages and described using light microscopy. The influence of octacalcium phosphate layer on the electrochemical characteristics of Elektron 21 magnesium alloy was evaluated by potentiodynamic measurements in 0.1 M NaCl solution at a temperature 22 ± 1°C. Evaluation of calcium phosphating process realized on the alloy surface after grinding was investigated by electrochemical tests supported by photodocumentation using stereomicroscope.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-120

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Luo, M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, J. Mater. Sci. 29 (1994) 52-59.

DOI: 10.1007/bf01171534

Google Scholar

[2] B.L. Mordike, T. Ebert, Magnesium alloys and applications, Mater. Sci. Eng. A (2001) 32-37.

Google Scholar

[3] L. Kunz, S. Fintová, Fatigue Behaviour of AZ91 Magnesium Alloy in as-Cast and Severe Plastic Deformed Conditions, Adv. Mater. Res. 891 (2014) 397-402.

DOI: 10.4028/www.scientific.net/amr.891-892.397

Google Scholar

[4] P. Lyon, I. Syed, T. Wilks, The influence of alloying elements and heat treatment upon properties of Elektron 21 (EV31A) alloy, Magnes. Technol. (2005) 303-308.

Google Scholar

[5] Sheet MEL-Magnesium Elektron no. 455.

Google Scholar

[6] L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals, Structure and Properties, Taylor& Francis Eds., (2003).

DOI: 10.1201/9781482265163

Google Scholar

[7] L.R. Gill, G.W. Lorimer, P. Lyon, The Effect of Zinc and Gadolinium on the Precipitation Sequence and Quench Sensitivity of Four Mg-Nd-Gd alloys, Adv. Eng. Mater. 9 (2007) 784.

DOI: 10.1002/adem.200700158

Google Scholar

[8] G. Song, A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater. 5 (2003) 837–858.

DOI: 10.1002/adem.200310405

Google Scholar

[9] X. Zhang, Q. Li, L. Li, P. Zhang, Z. Wang, F. Chen, Fabrication of hydroxyapatite/stearic acid composite coating and corrosion behavior of coated magnesium alloy. Mater. Lett. (2012) 76-78.

DOI: 10.1016/j.matlet.2012.08.011

Google Scholar

[10] F. Nový, M. Janeček, V. Škorík, J. Müller, L. Wagner, Very high cycle fatigue behaviour of as-extruded AZ31, AZ80, and ZK60 magnesium alloys, Int. J. Mat. Res. (Z. Metallkd. ) 100 (2009) 288-291.

DOI: 10.3139/146.110043

Google Scholar

[11] M. Kasenčák, P. Palček, A. Námešný, Internal damping of magnesium alloy in dependence on amplitude deformation, Mater. Eng. 15 (2008) 101-104.

Google Scholar

[12] G. Lorimer, P. Apps, H. Karimzadech, J. King, Improving the performance of Mg-Rare Earth alloys by the use of Gd or Dy additions, Mater. Sci. Forum 419-422 (2003) 279-284.

DOI: 10.4028/www.scientific.net/msf.419-422.279

Google Scholar

[13] F. Pastorek, B. Hadzima, Study of calcium phosphate (DCPD) electrodeposition process on a Mg–3Al–1Zn magnesium alloy surface, Mater. Eng. 19 (2012) 54–63.

Google Scholar