[1]
V.E. Panin, Surface layers as synergetic activator of plastic yielding of loaded solid, Met. Sci. Heat Treat. 47 (2005) 312-318.
DOI: 10.1007/s11041-005-0072-9
Google Scholar
[2]
L.B. Zuev, S.A. Barannikova, Experimental study of plastic flow macro-scale localization process: Pattern, propagation rate, dispersion, Int. J. Mech. Sci. 88 (2014) 1-7.
DOI: 10.1016/j.ijmecsci.2014.06.012
Google Scholar
[3]
V.I. Danilov, D.V. Orlova, L.B. Zuev, On the kinetics of localized plasticity domains emergent at the pre-failure stage of deformation process, Mater. Des. 32 (2011) 1554-1558.
DOI: 10.1016/j.matdes.2010.09.031
Google Scholar
[4]
S.R. Ignatovich, A. Menou, M.V. Karuskevich, P.O. Maruschak, Fatigue damage and sensor development for aircraft structural health monitoring, Theor. Appl. Fract. Mech. 65 (2013) 23–27.
DOI: 10.1016/j.tafmec.2013.05.004
Google Scholar
[5]
P. Maruschak, I. Konovalenko, M. Karuskevich, et al., Automated diagnostics of damage to an aluminum alloy under the conditions of high-cycle fatigue, Mat. Tehn. 47 (2013) 357-361.
Google Scholar
[6]
I.B. Konovalenko, M.V. Karuskevich, P.O. Marushchak, S.R. Ignatovitch, Automated evaluation of the kinetics of damage accumulation on the surface of a fatigue sensor based on the analysis of strain relief parameters, Opt. Instrum. Data Proc. 50 (2014).
DOI: 10.3103/s8756699014040050
Google Scholar
[7]
I. Konovalenko, P. Maruschak, A. Menou, M. Karuskevich, S. Ignatovich, A novel algorithm for damage analysis of fatigue sensor by surface deformation topography parameters, Proc. of the Internat. Symp. Operational Research and Applications, Marrakech, Morocco, 2013, 678–684.
Google Scholar
[8]
V.I. Zubov, A.N. Olisov, G.V. Stepanov, N.G. Chausov, A.V. Shirokov, Effect of D16T alloy grain sizes on its deformation inhomogeneity under static and dynamic loading, Strength Mater. 44 (2012) 551-555.
DOI: 10.1007/s11223-012-9407-0
Google Scholar
[9]
Т. Ebinger, H. Steeb, S. Diebles, Modeling macroscopic extended continua with the aid of numerical homogenization schemes, Comput. Mater. Sci. 32 (2005) 337-347.
DOI: 10.1016/j.commatsci.2004.09.034
Google Scholar
[10]
G.M. Kamath, R. Sundaram, N. Gupta, M. Subba Rao, Damage studies in composite structures for structural health monitoring using strain sensors, Struct. Health Monit. 9 (2010) 497-512.
DOI: 10.1177/1475921710365391
Google Scholar
[11]
P. Yasniy, P. Maruschak, R. Bishchak, V. Hlado, A. Pylypenko, Damage and fracture of heat resistance steel under cyclic thermal loading, Theor. Appl. Fract. Mech. 52 (2009) 22-25.
DOI: 10.1016/j.tafmec.2009.06.005
Google Scholar
[12]
P. Maruschak, I. Zakiev, V. Mocharsky, and Y. Nikiforov, Experimental study of the surface of steel 15Kh13MF after the nanosecond laser shock processing, Solid State Phenom. 200 (2013) 60–65.
DOI: 10.4028/www.scientific.net/ssp.200.60
Google Scholar
[13]
C. Sbarufatti, A. Manes, M. Giglio, Performance optimization of a diagnostic system based upon a simulated strain field for fatigue damage characterization, Mech. Syst. Signal Process. 40 (2013) 667–690.
DOI: 10.1016/j.ymssp.2013.06.003
Google Scholar
[14]
I. Vlasov, S. Panin, V. Sergeev, O. Bogdanov, P. Maruschak, B. Ovechkin, Effect of ion-arc vacuum-beam treatment by Zr+ on a structure and fatigue durability of 30CrMnSiNi2 Steel / Book of the Russia-China International Workshop External fields processing and treatment technology and preparation of nanostructure of metals and alloys, Novokuznetsk, Publishing Center of Siberian State Industrial University, 2014, pp.282-290.
DOI: 10.1016/j.protcy.2015.02.045
Google Scholar