A Contribution to the Analysis of Water Vapor Transport in Porous Building Materials

Article Preview

Abstract:

The suitability of a water vapor transport parameter determined by the cup method for the description of water vapor transport in porous building material is analyzed in the paper. The relative humidity profiles are measured by a transient method with different water vapor pressure gradients. Moisture profiles calculated using a mathematical model are compared with the measured profiles. The goodness-of-fit tests are calculated for different experimental setups. The possibility of application of the analyzed water vapor transport parameter is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-115

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] EN ISO 12572: Hygrothermal performance of building materials and products - Determination of water vapour transmission properties (ISO 12572: 2001), CEN (European Committee for Standardization), Brussels, 27p.

Google Scholar

[2] R. Černý (ed. ), Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials: Assessment and Synthesis of Analytical Data and Construction of the System. (2010).

Google Scholar

[3] J. Kočí, J. Žumár, Z. Pavlík, R. Černý, Application of Genetic Algorithm for Determination of Water Vapor Diffusion Parameters of Building Materials, J. Build. Phys. 35 (2012) 238-250.

DOI: 10.1177/1744259111418330

Google Scholar

[4] M. Jerman, M. Keppert, J. Výborný, R. Černý, Hygric, thermal and durability properties of autoclaved aerated concrete, J. Constr. Build. Mater. 41 (2013) 352-359.

DOI: 10.1016/j.conbuildmat.2012.12.036

Google Scholar

[5] S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials, J. Therm. Envelope Build. Sci. 27 (2004) 307 – 325.

DOI: 10.1177/1097196304042119

Google Scholar

[6] F. McGregor, A. Heath, A. Shea, M. Lawrence. The moisture buffering capacity of unfired clay masonry, Build. Environ. 82 (2014) 599-607, ISSN 0360-1323.

DOI: 10.1016/j.buildenv.2014.09.027

Google Scholar

[7] F. Collet, S. Pretot, J. Chamoin, C. Lanos. Hydric characterization of sprayed Hempcrete, Energy Efficiency and New Approaches. (2009) Beysan Matbaacilik ve Reklamcilik, Istanbul, p.49–55.

Google Scholar

[8] L. Kuishan, Z. Xu,G. Jun, Experimental investigation of hygrothermal parameters of building materials under isothermal conditions. J. Build. Phys. 32 (2009) 355–370.

DOI: 10.1177/1744259108102832

Google Scholar

[9] J. Fořt, Z. Pavlík, J. Žumár, M. Pavlíková, R. Černý, Effect of temperature on water vapor transport properties. J. Build. Phys. 38 (2014) 156-169.

DOI: 10.1177/1744259114532612

Google Scholar

[10] Z. Pavlík, J. Žumár, M. Pavlíková, R. Černý, A Boltzmann transformation method for investigation of water vapor transport in building materials, J. Build. Phys. 35 (2011) 213-223.

DOI: 10.1177/1744259111418329

Google Scholar

[11] ASTM, Maintaining constant relative humidity by means of aqueous solutions, ASTM E 104, Philadelphia, (1985).

Google Scholar