The Experimental Testing of the Tensile Strength of the Steel Fibre Reinforced Cement Matrix

Article Preview

Abstract:

This article is focused on state of knowledge about experimental testing of uniaxial tension strength of specimens from cement-based composites. We searched for various types of experimental testing of tensile strength, shapes of specimens or type of reinforcement. There is our own experimental program at the end of this article. Our aim is to find the best way to test steel fibre reinforced cement matrix for textile reinforced concrete in oneaxial tension. Textile reinforced concrete has many advantages (e.g.: no covering layer, higher ductility) and may be used instead of common steel reinforced concrete or as a method to repair old structures (e.g.: to bind columns).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-200

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sovják, F. Vogel, B. Beckmann, 2013, Triaxial Compressive Strength of Ultra High Performance Concrete, Acta Polytechnica 53(6) (2013) 201-205.

DOI: 10.14311/ap.2013.53.0901

Google Scholar

[2] F. Vogel, 2014, Production and Use of the Textile Reinforced Concrete, Advanced Materials Research, Vol. 982, pp.59-62.

DOI: 10.4028/www.scientific.net/amr.982.59

Google Scholar

[3] R. Barhum, V. Mechtcherine, 2012, Effect of short, dispersed glass and carbon fibres on the behavior of textile-reinforced concrete under tensile loading, Engineering Fracture Mechanics, Vol. 92, pp.56-71.

DOI: 10.1016/j.engfracmech.2012.06.001

Google Scholar

[4] J. Hartig, F. Jesse, K. Schicktanz, U. Häußler-Combe, 2012, Influence of experimental setups on the apparent uniaxial tensile load-bearing capacity of Textile Reinforced Concrete specimens, Materials and Structures, 45: 433-446. DOI 10. 1617/s11527-011-9775-0.

DOI: 10.1617/s11527-011-9775-0

Google Scholar

[5] P., J. Mehta, P. Monteiro, Concrete: microstructure, properties, and materials. Fourth edition /. xxiii, 675 pages. ISBN 9780071797870.

Google Scholar

[6] A. Brückner, R. Ortlepp, M. Curbach, 2006, Textile reinforced concrete for strengthening in bending and shear, Materials and Structures, 39: 741-784, DOI 10. 1617/s11527-005-9027-2.

DOI: 10.1617/s11527-005-9027-2

Google Scholar

[7] R.A. van Vliet, G.M. van Mier, Experimental investigation of size effect in concrete and sandstone under uniaxial tension, Engineering Fracture Mechanics, Vol. 65, pp.165-188.

DOI: 10.1016/s0013-7944(99)00114-9

Google Scholar

[8] E. Denneman, E. Kearsley, A. Visser, Splitting tensile test for fibre reinforced concrete, CSIR Built Environment, Meiring Naude Road, Pretoria, South Africa.

Google Scholar

[9] B. Felekoglu, K. Tosun-Felekoglu, R. Ranade, Q. Zhang, V. Li, V., Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC, Composites: Part B 60 (2014) 359-370.

DOI: 10.1016/j.compositesb.2013.12.076

Google Scholar

[10] T. Vlach, L. Laiblová, A. Chira, M. Novotná, C. Fiala, M. Ženíšek, P. Hájek, 2014, Comparison of Different Methods for Determination of Modulus of Elasticity of Composite Reinforcement Produced from Roving, Advanced Materials Research, Vol. 1054, pp.104-109.

DOI: 10.4028/www.scientific.net/amr.1054.104

Google Scholar

[11] F. Vogel, O. Holčapek, M. Jogl, K. Kolář, P. Konvalinka, 2015, Development of mechanical properties of steel fibers reinforced high strength concrete, Advanced Materials Research, Vol. 1077, pp.113-117.

DOI: 10.4028/www.scientific.net/amr.1077.113

Google Scholar

[12] J. Koťátková, P. Reiterman, 2014, Effects of Different Types of Steel Fibers on the Mechanical Properties of High Strength Concrete, Advanced Materials Research, Vol. 1054, pp.80-84.

DOI: 10.4028/www.scientific.net/amr.1054.80

Google Scholar