Processing and Characterization of Wood Plastic Composites from Bio-Based Polyamide 11 and Chemically Modified Beech Fibers

Article Preview

Abstract:

In this study, the reinforcement of bio-based Polyamide 11 (PA 11) with physico-chemically modified Beech Fibers was investigated. In a first step, an improvement of the thermal stability of the fibers was achieved by a two-step alkaline treatment with sodium hydroxide and hydrogen peroxide. This effect was attributed to the removal of the hemicellulose from the fiber surface, as verified by Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR). Consequently, the onset-temperature of thermal degradation as measured by Thermo-Gravimetric Analysis (TGA) increased from 285 °C to 337 °C. Given this, the compounding of the modified fibers with the low melting bio-based Polyamide 11 was done in a lab-scale co-kneader and followed by subsequent injection molding of test specimens. Analysis of the mechanical and thermo-mechanical properties of the processed Wood Plastic Composites showed a beneficial effect of the chemical fiber treatment on composite stiffness, and allowed for suggestions to improve the up scaling of the processing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

1039-1046

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Xu, K. Jayaraman, C. Morin, N. Pecqueux, Life cycle assessment of wood-fibre-reinforced polypropylene composites, J. Mater. Process. Technol. 198 (2008) 168-177.

DOI: 10.1016/j.jmatprotec.2007.06.087

Google Scholar

[2] H. Frisk, D. Schwendemann, Holzfasern mit Kunststoff compoundieren, Kunststoffe 4/2004 (2004) 76-80.

Google Scholar

[3] E. Bürkle, G. Scheel, L. Darnedde, Energieeffiziente Verarbeitung naturfaserverstärkter Kunststoffe, Kunststoffe 2/2009 (2009) 39-44.

Google Scholar

[4] I. Radovanovic, Verarbeitung und Optimierung der Rezeptur von Wood Plastic Composites (WPC), Dissertation, Universität Osnabrück (2007).

Google Scholar

[5] E. Volkmann, R. Einsiedel, J. Müssig, Cellulosefaserverstärkung für impactbelastete Bauteile, Kunststoffe 6/2012 (2012) 34-39.

Google Scholar

[6] O. Faruk, A.K. Bledzki, H. -P. Fink, M. Sain, Biocomposites reinforced with natural fibers: 2000-2010, Prog. Polym. Sci. 37 (2012) 1552-1596.

DOI: 10.1016/j.progpolymsci.2012.04.003

Google Scholar

[7] R.P. Babu, K. O'Connor, R. Seeram, Current progress on bio-based polymers and their future trends, Prog. Biomater. 2/8 (2013) 1-16.

DOI: 10.1186/2194-0517-2-8

Google Scholar

[8] A. Valadez-Gonzales, J.M. Cervantes-Uc, R. Olayo, P.J. Herrera-Franco, Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites, Composites Part B 30 (1999) 309-320.

DOI: 10.1016/s1359-8368(98)00054-7

Google Scholar

[9] C.A.S. Hill, N.S. Cetin, Surface activation of wood for graft polymerisation, Int. J. Adhes. Adhes. 20 (2000) 71-76.

Google Scholar

[10] X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review, J. Polym. Environ. 15 (2007) 25-33.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[11] J. Chen, D.J. Gardner, Dynamic mechanical properties of extruded nylon-wood composites, Polym. Compos. (2008) 372-379.

DOI: 10.1002/pc.20400

Google Scholar

[12] P.A. Santos, M.A.S. Spinace, K.K.G. Fermoselli, M. -A. De Paoli, Polyamide-6/vegetal fiber composite prepared by extrusion and injection molding, Composites Part A 38 (2007) 2404-2411.

DOI: 10.1016/j.compositesa.2007.08.011

Google Scholar

[13] K.K. Pandey, A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy, J. Appl. Polym. Sci. 71 (1999) 1969-(1975).

DOI: 10.1002/(sici)1097-4628(19990321)71:12<1969::aid-app6>3.0.co;2-d

Google Scholar

[14] T. Nguyen, E. Zavarin, E.M. Barrall, Thermal Analysis of Lignocellulosic Materials. Part I. Unmodified Materials, J. Macromol. Sci. Part C 20 (1981) 1-65.

DOI: 10.1080/00222358108080014

Google Scholar

[15] T. Nguyen, E. Zavarin, E.M. Barrall, Thermal Analysis of Lignocellulosic Materials. Part II. Modified Materials, J. Macromol. Sci. Part C 21 (1981) 1-60.

DOI: 10.1080/00222358108080924

Google Scholar

[16] S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, M.P. Wolcott, Application of michromechanical models to tensile properties of wood-plastic composites, Wood Sci. Technol. 45 (2011) 521-535.

DOI: 10.1007/s00226-010-0351-5

Google Scholar

[17] S.E. Selke, I. Wichmann, Wood fiber/polyolefin composites, Composites Part A 35 (2004) 321-326.

DOI: 10.1016/j.compositesa.2003.09.010

Google Scholar

[18] D. Aydemir, A. Kiziltas, E.E. Kiziltas, D.J. Gardner, G. Gunduz, Heat treated wood–nylon 6 composites, Composites Part B 68 (2015) 414-423.

DOI: 10.1016/j.compositesb.2014.08.040

Google Scholar