Stiffness and Strength Based Models for the Fatigue-Life Prediction of Continuously Fiber Reinforced Composites

Article Preview

Abstract:

The fatigue-life prediction of continuously fiber reinforced carbon/epoxy composites is of importance in order to support or partially replace the extensive amount of mechanical testing necessary for safe structural applications. However, the factors influencing the damage behaviour and the degradation of mechanical properties under real applications are numerous. To be able to predict fatigue-life of composites in an application-oriented way in the future, two novel approaches towards fatigue-life predictions have been studied by the authors in the last years. In this work, the promising approaches based on fatigue stiffness and fatigue strength and their potentials are introduced briefly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

960-967

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Talreja, Fatigue of Composite Materials, Technomic Publishing Inc, Pennsylvania U.S. A, (1987).

Google Scholar

[2] R. Talreja, Damage development in composites: Mechanisms and modelling, The Journal of Strain Analysis for Engineering Design 24(4) (1989) 215-222.

DOI: 10.1243/03093247v244215

Google Scholar

[3] R. Talreja, Damage Characterisation, in: K.L. Reifsnider (Ed. ), Fatigue of composite materials, Elsevier, Amsterdam, New York, 1991, pp.79-103.

Google Scholar

[4] K.L. Reifsnider, Fatigue of composite materials, Elsevier, Amsterdam, New York, (1991).

Google Scholar

[5] K.L. Reifsnider, Damage and damage mechanics, in: K.L. Reifsnider (Ed. ), Fatigue of composite materials, Elsevier, Amsterdam, New York, 1991, pp.11-77.

DOI: 10.1016/b978-0-444-70507-5.50006-8

Google Scholar

[6] E. Haibach, Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung, Springer, Berlin, (2006).

Google Scholar

[7] D. Radaj, Ermüdungsfestigkeit: Grundlagen für Leichtbau, Maschinen- und Stahlbau, third ed., Springer, Berlin, (2007).

Google Scholar

[8] K.L. Reifsnider, E.G. Henneke, W. Stinchcomb, J.C. Duke, Damage Mechanics and NDE of Composite Laminates, in: Z. Hashin, C.T. Herakovich (Eds), Composite Materials: Recent Advances, Pergamon Press Inc, 1983, pp.399-420.

DOI: 10.1016/b978-0-08-029384-4.50032-8

Google Scholar

[9] W. Stinchcomb, C.E. Bakis, Fatigue behaviour of composite materials, in: K.L. Reifsnider (Ed. ), Fatigue of composite materials, Elsevier, Amsterdam, New York, 1991, pp.105-180.

DOI: 10.1016/b978-0-444-70507-5.50008-1

Google Scholar

[10] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden: Mit 39 Tabellen, second ed., Springer, Berlin, Heidelberg, New York, (2007).

DOI: 10.1007/978-3-540-72190-1

Google Scholar

[11] ASTM International, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, PA, U.S.A., (2000).

Google Scholar

[12] DIN EN ISO 527-4, Plastics - Determination of tensile properties - part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastics composites, CEN (European Committee for Standardization), Brüssel, Belgium, (1997).

DOI: 10.3403/30409901

Google Scholar

[13] J. Brunbauer, G. Pinter, Fatigue life prediction of carbon fibre reinforced laminates by using cycle-dependent classical laminate theory, Composites Part B: Engineering 70 (2015) 167-174.

DOI: 10.1016/j.compositesb.2014.11.015

Google Scholar

[14] B. Zahnt, Ermüdungsverhalten von diskontinuierlich glasfaserverstärkten Kunststoffen: Charakterisierungsmethoden, Werkstoffgesetze und Struktur-Eigenschafts-Beziehungen, Dissertation, Montanuniversität Leoben, Austria, (2003).

Google Scholar

[15] G. Pinter, E. Ladstätter, W. Billinger, R. Lang, Characterisation of the tensile fatigue behaviour of RTM-laminates by isocyclic stress–strain-diagrams, International Journal of Fatigue 28 (2006) 1277-1283.

DOI: 10.1016/j.ijfatigue.2006.02.012

Google Scholar

[16] J. Brunbauer, G. Pinter, Technological approach to fatigue life prediction of CFRP, in: ECCM16 (Ed), 16th European Conference on Composite Materials, Sevilla, Spain, (2014).

Google Scholar

[17] J. Brunbauer, G. Pinter, On the strain measurement and stiffness calculation of carbon fibre reinforced composites under quasi-static tensile and tension-tension fatigue loads, Polymer Testing 40 (2014) 256-264.

DOI: 10.1016/j.polymertesting.2014.09.014

Google Scholar

[18] J. Brunbauer, F. Arbeiter, S. Stelzer, G. Pinter, Stiffness Based Fatigue Characterisation of CFRP, AMR 891-892 (2014) 166-171.

DOI: 10.4028/www.scientific.net/amr.891-892.166

Google Scholar

[19] A. Puck, Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis, Hanser Verlag, München, Wien, (1996).

DOI: 10.1002/maco.19970480709

Google Scholar

[20] H. Deuschle, 3D failure analysis of UD fibre reinforced composites: Puck's theory within FEA, Dissertation, Stuttgart, (2010).

Google Scholar

[21] M. Orth, M. Butz, C. Gaier, Durability Assessment of CFRP Components with Static Failure Criteria / Betriebsfestigkeitsanalyse von CFK-Bauteilen mit statischen Versagenskriterien, MP 56(7-8) (2014) 559–566.

DOI: 10.3139/120.110597

Google Scholar