Various Magnetic Properties of Magnetite Nanoparticles Synthesized from Iron-Sands by Coprecipitation Method at Room Temperature

Article Preview

Abstract:

Natural sand-based magnetite nanoparticles have been succesfully synthesized by coprecipitation method at room temperature. Magnetite nanoparticles were investigated by X-ray Diffractometer (XRD) and Vibrating Sample Magnetometer (VSM). The morphology of magnetite nanoparticles has been evaluated by Transmission Electron Microscopy (TEM). Qualitative analysis of XRD data reveals that the structure of magnetite nanoparticles have the same phase of ICSD No. 82237. On the other hand, quantitative analysis shows that the crystallite size of magnetite nanoparticles have ranges between 8.89 nm to 12.49 nm. The average diameter of magnetite nanoparticles increase with the increase the stirring rate of reaction when the stirring rate is lower than 1000 rpm, while the crystallite size of magnetite particles decrease with the increase the stirring rate when the stirring rate is higher than 1000 rpm. The stirring rate of reaction influence the the magnetic properties of magnetite nanoparticles. The results of the best magnetic respon are revealed for the stirring rate of 1000 rpm with the larger the crystallite size of magnetite nanoparticles due to its stronger saturation magnetization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-234

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Priya James, R. John, A. Alex, K.R. Anoop, Smart polymers for the controlled delivery of drugs – a concise overview, Acta Pharm. Sin. B. 4 (2014) 120–127.

DOI: 10.1016/j.apsb.2014.02.005

Google Scholar

[2] P. Mendoza Zélis, D. Muraca, J.S. Gonzalez, G.A. Pasquevich, V.A. Alvarez, K.R. Pirota, F.H. Sánchez, Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications, J. Nanoparticle Res. 15 (2013).

DOI: 10.1007/s11051-013-1613-6

Google Scholar

[3] L.L. Lao, R.V. Ramanujan, Magnetic and hydrogel composite materials for hyperthermia applications, J. Mater. Sci. Mater. Med. 15 (2004) 1061–1064.

Google Scholar

[4] R.V. Ramanujan, L.L. Lao, The mechanical behavior of smart magnet–hydrogel composites, Smart Mater. Struct. 15 (2006) 952-956.

DOI: 10.1088/0964-1726/15/4/008

Google Scholar

[5] E.R. Kenawy, E.A. Kamoun, M.S. Mohy Eldin, M.A. El-Meligy, Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications, Arab. J. Chem. 7 (2014) 372–380.

DOI: 10.1016/j.arabjc.2013.05.026

Google Scholar

[6] S. Liong, A multifunctional approach to development, fabrication, and characterization of Fe3O4 composites, Georgia Institut of Technology, (2005).

Google Scholar

[7] J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles, J. Biomed. Mater. Res. A. 80 (2007) 333–341.

DOI: 10.1002/jbm.a.30909

Google Scholar

[8] Sunaryono, A. Taufiq, Munaji, B. Indarto, Triwikantoro, M. Zainuri, Darminto, Magneto-elasticity in hydrogels containing Fe3O4 nanoparticles and their potential applications, AIP Conf. Proc. 1555 (2013) 53–56.

DOI: 10.1063/1.4820992

Google Scholar

[9] N. Sahiner, S. Butun, P. Ilgin, Soft hydrogel particles with high functional value, Colloids Surf. Physicochem. Eng. Asp. 381 (2011) 74–84.

DOI: 10.1016/j.colsurfa.2011.03.038

Google Scholar

[10] M. Abu Bakar, W.L. Tan, N.H.H. Abu Bakar, A simple synthesis of size-reduce magnetite nano-crystals via aqueous to toluene phase-transfer method, J. Magn. Magn. Mater. 314 (2007) 1–6.

DOI: 10.1016/j.jmmm.2007.01.018

Google Scholar

[11] Darminto, M.N. Cholishoh, F.A. Perdana, M.A. Baqiya, Mashuri, Y. Cahyono, Triwikantoro, Preparing Fe3O4 nanoparticles from Fe2+ ions source by co-precipitation process in various pH, AIP Conf. Proc. 1415 (2011) 234–237.

DOI: 10.1063/1.3667264

Google Scholar

[12] S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu, L. Xu, Synthesis of magnetite nanorods and porous hematite nanorods, Solid State Commun. 129 (2004) 485–490.

DOI: 10.1016/j.ssc.2003.11.043

Google Scholar

[13] S. Beyaz, T. Tanrisever, H. Kockar, Emulsifier-free emulsion polymerization of methyl methacrylate containing hydrophilic magnetite nanoparticles, Macromol. Res. 18 (2010) 1154–1159.

DOI: 10.1007/s13233-010-1205-6

Google Scholar

[14] S. Beyaz, T. Tanrisever, H. Kockar, V. Butun, Superparamagnetic latex synthesized by a new route of emulsifier-free emulsion polymerization, J. Appl. Polym. Sci. 121 (2011) 2264–2272.

DOI: 10.1002/app.33895

Google Scholar

[15] Z. Huang, F. Tang, Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres, J. Colloid Interface Sci. 281 (2005) 432–436.

DOI: 10.1016/j.jcis.2004.08.121

Google Scholar

[16] W. Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen, C.Y. Hong, Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible, J. Magn. Magn. Mater. 283 (2004) 210–214.

DOI: 10.1016/j.jmmm.2004.05.022

Google Scholar

[17] B.D. Cullity, C.D. Graham, Fine particles and thin films, in Introduction to Magnetic Materials, John Wiley & Sons, Inc., 2008, p.359–408.

Google Scholar

[18] A.H. Morrish, S.P. Yu, Magnetic measurements on individual microscopic ferrite particles near the single-domain size, Phys Rev. 102 (1956) 670–673.

DOI: 10.1103/physrev.102.670

Google Scholar

[19] R.M. Cornell, U. Schwertmann, Electronic, electrical and magnetic properties and colour, in The Iron Oxides, Wiley-VCH Verlag GmbH & Co. KGaA, 2004, p.111–137.

Google Scholar

[20] R.W. Chantrell, J. Popplewell, S. Charles, Measurements of particle size distribution parameters in ferrofluids, Magn. IEEE Trans. On. 14 (1978) 975–977.

DOI: 10.1109/tmag.1978.1059918

Google Scholar