[1]
T.T. Wohlers, Wohlers Report 2013: Additive Manufacturing and 3D printing state of the industry, Colorado, USA: Wohlers Associates, (2013).
Google Scholar
[2]
I. Smurov, M. Doubenskaia, Temperature monitoring by optical methods in laser processing, in: J.D. Majumdar, I. Manna, (Eds. ), Laser-assisted fabrication of materials, Springer series in Materials science 161, Springer-Verlag Berlin Heidelberg, (2013).
DOI: 10.1007/978-3-642-28359-8_9
Google Scholar
[3]
U. Thombansen, A. Gatej, M. Pereira, Tracking the course of the manufacturing process in selective laser melting, in Proc. of SPIE, International Society for Optics and Photonics, 8963 (2014).
DOI: 10.1117/12.2040330
Google Scholar
[4]
H. Krauss, C. Eschey, M.F. Zaeh, Thermography for monitoring the selective laser melting process, edited by D. Bourell, R. Crawford, C. Seepersad, J. Beaman, H. Marcus, in Proc. of the 23rd Annual International Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX, (2012).
Google Scholar
[5]
T. Craeghs, S. Clijsters, J. P. Kruth, F. Bechmann, M.C. Ebert, Detection of process failures in layerwise laser melting with optical process monitoring, Phys. Procedia. 39 (2012) 753-759.
DOI: 10.1016/j.phpro.2012.10.097
Google Scholar
[6]
T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen, J. P. Kruth, Determination of geometrical factors in layerwise laser melting using optical process monitoring, Opt. Lasers En. 49. 12 (2011) 1440-1446.
DOI: 10.1016/j.optlaseng.2011.06.016
Google Scholar
[7]
T. Furumoto, M.R. Alkahari, T. Ueda, M.S.A. Aziz, A. Hosokawa, Monitoring of laser consolidation process of metal powder with high speed video camera, Phys. Procedia. 39 (2012) 760-766.
DOI: 10.1016/j.phpro.2012.10.098
Google Scholar
[8]
U. Thombansen, U. Michael, Illumination for process observation in laser material processing, Phys. Procedia. 56 (2014) 1286-1296.
DOI: 10.1016/j.phpro.2014.08.053
Google Scholar
[9]
I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution, J. Alloy Compd. 583 (2014) 404-409.
DOI: 10.1016/j.jallcom.2013.08.183
Google Scholar
[10]
K.C. Mills, Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Ltd., Cambridge, UK, (2002).
Google Scholar
[11]
M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.H. Nadal, B. Wilthan, G. Pottlacher, Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int. J. Thermophys. 27. 2 (2006) 507-529.
DOI: 10.1007/pl00021868
Google Scholar
[12]
L. González-Fernández, E. Risueño, R.B. Pérez-Sáez, M.J. Tello, Infrared normal spectral emissivity of Ti–6Al–4V alloy in the 500–1150K temperature range, J. Alloys Compd. 541 (2012) 144-149.
DOI: 10.1016/j.jallcom.2012.06.117
Google Scholar
[13]
S. Elhadj, M. J. Matthews, S. T. Yang, Combined infrared thermal imaging and laser heating for the study of materials thermophysical and processing properties at high temperatures, Crit. Rev. Solid State Mater. Sci. 39. 3 (2014) 175-196.
DOI: 10.1080/10408436.2013.789962
Google Scholar
[14]
I. Yadroitsev, Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders, Lap Lambert Acad. Publ, Saarbrücken, (2009).
Google Scholar