Optical Monitoring and Numerical Simulation of Temperature Distribution at Selective Laser Melting of Ti6Al4V Alloy

Article Preview

Abstract:

Selective laser melting (SLM) is a modern method for producing objects with complex shape and fine structures in one working cycle from metal powders. Combination of the advanced technology of SLM with unique properties of Ti6Al4V alloy allows creating complex 3D objects for medicine or aerospace industry. Since properties of SLM parts depend on the geometrical characteristics of tracks and their cohesion, optical monitoring is actually used to for control the process. Temperature gradient determines the microstructure and mechanical properties of the SLM part, so studies about temperature fields are primarily important. On-line monitoring during laser scanning of Ti6Al4V alloy and formation of a single track in real-time with high-speed IR camera was studied. Numerical simulation allowed estimation the temperature distribution during processing. Conclusion regarding control system based on the online monitoring of deviations of the signal from IR camera during the SLM process was done.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 828-829)

Pages:

474-481

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.T. Wohlers, Wohlers Report 2013: Additive Manufacturing and 3D printing state of the industry, Colorado, USA: Wohlers Associates, (2013).

Google Scholar

[2] I. Smurov, M. Doubenskaia, Temperature monitoring by optical methods in laser processing, in: J.D. Majumdar, I. Manna, (Eds. ), Laser-assisted fabrication of materials, Springer series in Materials science 161, Springer-Verlag Berlin Heidelberg, (2013).

DOI: 10.1007/978-3-642-28359-8_9

Google Scholar

[3] U. Thombansen, A. Gatej, M. Pereira, Tracking the course of the manufacturing process in selective laser melting, in Proc. of SPIE, International Society for Optics and Photonics, 8963 (2014).

DOI: 10.1117/12.2040330

Google Scholar

[4] H. Krauss, C. Eschey, M.F. Zaeh, Thermography for monitoring the selective laser melting process, edited by D. Bourell, R. Crawford, C. Seepersad, J. Beaman, H. Marcus, in Proc. of the 23rd Annual International Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX, (2012).

Google Scholar

[5] T. Craeghs, S. Clijsters, J. P. Kruth, F. Bechmann, M.C. Ebert, Detection of process failures in layerwise laser melting with optical process monitoring, Phys. Procedia. 39 (2012) 753-759.

DOI: 10.1016/j.phpro.2012.10.097

Google Scholar

[6] T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen, J. P. Kruth, Determination of geometrical factors in layerwise laser melting using optical process monitoring, Opt. Lasers En. 49. 12 (2011) 1440-1446.

DOI: 10.1016/j.optlaseng.2011.06.016

Google Scholar

[7] T. Furumoto, M.R. Alkahari, T. Ueda, M.S.A. Aziz, A. Hosokawa, Monitoring of laser consolidation process of metal powder with high speed video camera, Phys. Procedia. 39 (2012) 760-766.

DOI: 10.1016/j.phpro.2012.10.098

Google Scholar

[8] U. Thombansen, U. Michael, Illumination for process observation in laser material processing, Phys. Procedia. 56 (2014) 1286-1296.

DOI: 10.1016/j.phpro.2014.08.053

Google Scholar

[9] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution, J. Alloy Compd. 583 (2014) 404-409.

DOI: 10.1016/j.jallcom.2013.08.183

Google Scholar

[10] K.C. Mills, Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Ltd., Cambridge, UK, (2002).

Google Scholar

[11] M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.H. Nadal, B. Wilthan, G. Pottlacher, Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int. J. Thermophys. 27. 2 (2006) 507-529.

DOI: 10.1007/pl00021868

Google Scholar

[12] L. González-Fernández, E. Risueño, R.B. Pérez-Sáez, M.J. Tello, Infrared normal spectral emissivity of Ti–6Al–4V alloy in the 500–1150K temperature range, J. Alloys Compd. 541 (2012) 144-149.

DOI: 10.1016/j.jallcom.2012.06.117

Google Scholar

[13] S. Elhadj, M. J. Matthews, S. T. Yang, Combined infrared thermal imaging and laser heating for the study of materials thermophysical and processing properties at high temperatures, Crit. Rev. Solid State Mater. Sci. 39. 3 (2014) 175-196.

DOI: 10.1080/10408436.2013.789962

Google Scholar

[14] I. Yadroitsev, Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders, Lap Lambert Acad. Publ, Saarbrücken, (2009).

Google Scholar