Effect of Annealing on Hardness Penetration of Caliber Rolled Mg-3Al-1Zn (AZ31) Alloy

Article Preview

Abstract:

Mg-3Al-1Zn (AZ31) alloy was caliber rolled isothermally at the temperature of 300 °C to develop fine grains of 3.6 μm. Annealing was carried out at various times and temperatures. Along with microstructure, annealing affects the hardness and hardness penetration depth. The hardness penetration depth of caliber rolled bar during annealing at 300 to 450 °C was investigated for 5 to 60 minutes. The change in hardness penetration depth were analysed and the mechanisms involved were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 830-831)

Pages:

177-180

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Friedrich and B. Mordike, Magnesium Technology, Metallurgy, Design Data, Applications. Springer Berlin Heidelberg New York, (2006).

Google Scholar

[2] C. Blawert, N. Hort, and K. U. Kainer, Trans. Indian Inst. Met., 57 (2004) 397–408.

Google Scholar

[3] R. L. Doiphode, S. V. S. N. Murty, N. Prabhu, and B. P. Kashyap, Solid State Phenom., 209 (2013) 6–9.

Google Scholar

[4] R. L. Doiphode, S. V. S. Narayana Murty, N. Prabhu, and B. P. Kashyap, J. Magnes. Alloy., 1 (2013) 169–175.

Google Scholar

[5] R. L. Doiphode, R. Kulkarni, S. V. S. N. Murty, N. Prabhu, and B. P. Kashyap, Mater. Sci. Forum, 735 (2012) 327–331.

Google Scholar

[6] F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, Second edition. Elsevier Ltd, (2004).

DOI: 10.1016/b978-008044164-1/50003-7

Google Scholar

[7] T. Al-Samman and G. Gottstein, Mater. Sci. Eng. A, 490 (2008) 411–420.

Google Scholar

[8] A. Chapuis and J. H. Driver, Acta Mater., 59 (2011) 1986–(1994).

Google Scholar

[9] G. Gottstein and L. Shvindlerman, Grain Boundary Migration in metals. CRC Press, Florida, (1999).

Google Scholar

[10] E. O. Hall, Proc. Phys. Soc. London, B64 (1951) 747–753.

Google Scholar

[11] N. J. Petch, J. Iron Steel Inst., 174 (1953) 25–28.

Google Scholar