Highly Active TiO2-MoS2 Composite for Visible Light Photocatalytic Applications

Article Preview

Abstract:

Efficient visible light active TiO2-Molybdenum sulphide (TiO2-MoS2) composites were prepared by solvothermal methodfrom titanium isopropoxide and commercial MoS2 using N-methyl 2-pyrrolidone (NMP) and isopropanol (IPA) solvent mixture. Extended absorption band edge and enhanced visible light absorbance are supplemented intothe TiO2-MoS2 composites by this method. While TiO2 shows ~48% visible light photodegradation of rhodamine B (RhB) the TiO2-MoS2(0.24) exhibits~74% of degradation. In addition to the visible light enhancement, very high surface area and reduced charge transfer resistance at the interfaces are attributed to the enhanced activity of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 830-831)

Pages:

553-556

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Mukthar Ali, K.Y. Sandhya, Visible light responsive titanium dioxide–cyclodextrin–fullerene composite with reduced charge recombination and enhanced photocatalytic activity, Carbon 70 (2014) 249-257.

DOI: 10.1016/j.carbon.2014.01.003

Google Scholar

[2] F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Gratzel, A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporoustitania film for a high efficiency dye-sensitized solar cell, Chem. Comm. 23 (2008).

DOI: 10.1039/b802909a

Google Scholar

[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.V. Dubonos, A.A. Firosv, Twodimensionalgas of massless Dirac fermions in graphene, Nature 438 (2005) 197-200.

DOI: 10.1038/nature04233

Google Scholar

[4] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008) 1308.

DOI: 10.1126/science.1156965

Google Scholar

[5] B. Liu, Y. Huang, Y. Wen, L. Du, W. Zeng, Y. Shi, F. Zhang, G. Zhu, X. Xu, Y. Wang. Highly dispersive {001} facets-exposednanocrystalline TiO2 on high quality graphene as a high performance photocatalyst, Journal of Material Chemistry 22 (2012).

DOI: 10.1039/c2jm16114a

Google Scholar

[6] T. Lu, R. Zhang, Q. Hu, C. Hu, F. Chen, S. Duo, TiO2–graphene 25 composites with exposed {001} facets produced by a one-potsolvothermal approach for high performance photocatalyst. Physical, Chemistry Chemical Physics 15(2013) 12963-12970.

DOI: 10.1039/c3cp50942g

Google Scholar

[7] B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.Q. Wang, W. Yan, H. Fu, Enhanced photocatalytic activity and electron transfer mechanisms ofgraphene/TiO2with exposed {001} facets. Journal of Physical Chemistry C, 115 (2011) 23718-23725.

DOI: 10.1021/jp207624x

Google Scholar

[8] L. Sun, Z. Zhao, Y. Zhou, L. Liu. Anatase TiO2nanocrystals withexposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity, Nanoscale 4 (2012) 613-620.

DOI: 10.1039/c1nr11411e

Google Scholar

[9] T. Li, G. Galli, Electronic Properties of MoS2 Nanoparticles, J. Phys. Chem. C 111 (2007) 16192-16196.

Google Scholar

[10] S.M. Paek, H. Jung, M. Park, J.K. Lee, J.H. Choy, An Inorganic Nanohybrid with High Specific Surface Area: TiO2-Pillared MoS2, Chem. Mater. 17 (2005) 3492-3498.

DOI: 10.1021/cm0477220

Google Scholar