Grain Refinement and Thermal Stability of AISI1020 Strips Prepared by Large Strain Extrusion Machining

Article Preview

Abstract:

Low carbon steel (AISI1020) strips with grain refinement were successfully produced by large strain extrusion machining (LSEM).A finite element simulation was performed to make comprehensible the deformation behavior of LSEM process. The influence of annealing temperature and annealing time on the microstructure and mechanical properties of strips was investigated by two sets of heat treatments and Vickers hardness test. As a result, strips can maintain high hardness under 400°C but start losing it as the temperature increased to 500°C and above. When annealED at 300°C for 1~9h, hardness of strips can maintain at almost the same level as that before annealing. Obvious hardening was found when annealing at 200~300°C mainly because of the dislocations atresia. Despite of the anneal-hardening behavior, these results indicated that the extruded AISI1020 strip has a good thermal stability at temperature below 400°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 836-837)

Pages:

509-521

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Soleymani and B. eghbali, Grain Refinement in a Low Carbon Steel through Multidirectional Forging, J. Iron. Steel. Res. Int. 19 (2012) 74-78.

DOI: 10.1016/s1006-706x(12)60155-1

Google Scholar

[2] H. Ding, N. Shen and Y. C. Shin, Predictive modeling of grain refinement during multi-pass cold rolling, J. Mater. Process. Tech. 212 (2012) 1003-1013.

DOI: 10.1016/j.jmatprotec.2011.12.005

Google Scholar

[3] K. M. Lee and H. C. Lee, Grain refinement and mechanical properties of asymmetrically rolled low carbon steel, J. Mater. Process. Tech. 210(2010) 1574-1579.

DOI: 10.1016/j.jmatprotec.2010.05.004

Google Scholar

[4] L. Zaharia, R. Chelariu and R. Comaneci, Multiple direct extrusion: A new technique in grain refinement, Mater. Sci. Eng. A 550 (2012) 293-299.

DOI: 10.1016/j.msea.2012.04.074

Google Scholar

[5] B. Kim, C. H. Park and H. S. Kim, Grain refinement and improved tensile properties of Mg–3Al–1Zn alloy processed by low-temperature indirect extrusion, Scripta Mater. 76 (2014) 21-24.

DOI: 10.1016/j.scriptamat.2013.12.005

Google Scholar

[6] R. Ma, K. Fang and J. G. Yang, Grain refinement of HAZ in multi-pass welding, J. Mater. Process. Tech. 214 (2014) 1131-1135.

DOI: 10.1016/j.jmatprotec.2013.12.017

Google Scholar

[7] G. Sha, K. Tugcu and X. Z. Liao, Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion, Acta Mater. 63 (2014) 169-179.

DOI: 10.1016/j.actamat.2013.10.022

Google Scholar

[8] M. Alizadeh and M. Samiei, Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Mater. Design 56 (2014) 680-684.

DOI: 10.1016/j.matdes.2013.11.067

Google Scholar

[9] L. Su, C. Lu and A. A. Gazder, Shear texture gradient in AA6061 aluminum alloy processed by accumulative roll bonding with high roll roughness, J. Alloy Compd. 594 (2014) 12-22.

DOI: 10.1016/j.jallcom.2014.01.125

Google Scholar

[10] G. G. Maier, E. G. Astafurova and H. J. Maier, Annealing behavior of ultrafine grained structure in low-carbon steel produced by equal channel angular pressing, Mater. Sci. Eng. A 581 (2013) 104-107.

DOI: 10.1016/j.msea.2013.05.075

Google Scholar

[11] J. T. Wang, C. Xu and Z. Z. Du, Microstructure and properties of a low-carbon steel processed by equal-channel angular pressing, Mater. Sci. Eng. A 410-411(2005) 312-315.

DOI: 10.1016/j.msea.2005.08.111

Google Scholar

[12] T. L. Brown, S. Swaminathan and S. Chandrasekar, Low-cost manufacturing process for nanostructured metals and alloys, J. Mater. Res. 17 (2002) 2484-2488.

DOI: 10.1557/jmr.2002.0362

Google Scholar

[13] S. Swaminatha, M. R. Shankar and S. Lee, Large strain deformation and ultra-fine grained materials by machining, Mater. Sci. Eng. A 410-411(2005) 358-363.

Google Scholar

[14] W. Moscoso, M. R. Shankar and J. B. Mann, Bulk nanostructured materials by large strain extrusion machining, J. Mater. Res. 22 (2007) 201-205.

DOI: 10.1557/jmr.2007.0021

Google Scholar

[15] L. D. Chiffre, Extusion-cutting, Int. J. Mach. Tool Des. Res. 16 (1976) 137-144.

Google Scholar

[16] L. D. Chiffre, Extrusion cutting of brass strip, Int. J. Mach. Tool Des. Res. 23 (1983) 141-151.

Google Scholar

[17] M. R. Shankar, S. Chandrasekar and W. D. Compton, Characteristics of aluminum 6061-T6 deformed to large plastic strains by machining, Mater. Sci. Eng. A 410-411 (2005) 364-368.

DOI: 10.1016/j.msea.2005.08.137

Google Scholar

[18] C. Saldana, P. Yang, J. B. Mann, Micro-scale components from high-strength nanostructured alloys, Mater. Sci. Eng. A 503 (2009) 172-175.

DOI: 10.1016/j.msea.2008.02.056

Google Scholar

[19] M. Efe, W. Moscoso and K. P. Trumble, Mechanics of large strain extrusion machining and application to deformation processing of magnesium alloys, Acta Mater. 60 (2012) 2031-(2042).

DOI: 10.1016/j.actamat.2012.01.018

Google Scholar

[20] P. Iglesias, M. D. Bermudez and W. Moscoso, Friction and wear of nanostructured metals created by large strain extrusion machining, Wear 263 (2007) 636–642.

DOI: 10.1016/j.wear.2006.11.040

Google Scholar

[21] P. Iglesias, M. D. Bermudez and W. Moscoso, Influence of processing parameters on wear resistance of nanostructured OFHC copper manufactured by large strain extrusion machining, Wear 268 (2010) 178–184.

DOI: 10.1016/j.wear.2009.07.009

Google Scholar

[22] M. Furukawa, Z. Horita and M. Nemoto, Microhardness Measurement and the Hall-Petch Relationship in an Al-Mg Alloy with Submicrometer Grain Size, Acta Mater. 44 (1996) 4619-4629.

DOI: 10.1016/1359-6454(96)00105-x

Google Scholar

[23] M. V. Markushev, C. C. Bampton and M. Y. Murashkin, Structure and properties of ultra-fine grained aluminum alloys produced by severe plastic deformation, Mater. Sci. Eng. A 234-236 (1997) 927-931.

DOI: 10.1016/s0921-5093(97)00333-x

Google Scholar

[24] D. H. Shin, B. C. Kim, Y. S. Kim, Microstructural Evolution in a Commercial Low Carbon steel By Equal Channel Angular Pressing, Acta Mater. 48 (2000) 2247-2255.

DOI: 10.1016/s1359-6454(00)00028-8

Google Scholar

[25] C. F. Yang, J. H. Pan, T. H. Lee, Work-softening and anneal-hardening behaviors in fine-grained Zn–Al alloys, J. Alloy Compd. 468 (2009) 230-236.

DOI: 10.1016/j.jallcom.2008.01.067

Google Scholar

[26] Y. Zhang, L. Yang and X. Zeng, The mechanism of anneal-hardening phenomenon in extruded Zn–Al alloys, Mater. Design 50 (2013) 223-229.

DOI: 10.1016/j.matdes.2013.02.069

Google Scholar

[27] I. Markovic, S. Nestorovic and D. Markovic, Properties improvement and microstructure changes during thermomechanical treatment in sintered Cu–Au alloy, Trans. Nonferrous Met. Soc. China 24 (2014) 431-440.

DOI: 10.1016/s1003-6326(14)63079-x

Google Scholar

[28] Y. Ivanisenko, R. K. Wunderlich and R. Z. Valiev, Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation, Scripta Mater. 49 (2003) 947-952.

DOI: 10.1016/s1359-6462(03)00478-0

Google Scholar