Fabrication of Dense Nanostructured Bulk Ceramics by Means of Spark-Plasma-Sintering (SPS) Processing

Article Preview

Abstract:

In order to fabricate fine-grained and dense nanoceramic materials, the effect of spark-plasma-sintering (SPS) conditions was examined in MgAl2O4 spinel as a reference material. The SPS conditions, such as heating rate and loading temperature, strongly affected the microstructures. Although the density can be improved with decreasing the heating rate to less than 10 °C/min, it requires a long processing time. In order to fully utilize the high heating rate that is a primary advantage of the SPS technique, load controlling is very effective to achieve high density with maintaining fine grain size. An increase in the loading temperature during SPS processing can reduce the residual porosity in a spinel even at the widely used high heating rate of 100 °C/min. This suggests that for the SPS processing in ceramics, the load controlling is an important factor as well as the heating rate and sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

225-230

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Nieh, J. Wadswort, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, United Kingdom, (1997).

Google Scholar

[2] M. Omori, Sintering, Consolidation, Reaction and crystal growth by the spark plasma system (SPS), Mater. Sci. Eng. A 287 (2000) 183-88.

DOI: 10.1016/s0921-5093(00)00773-5

Google Scholar

[3] D.M. Hulbert, D. Jiang, J.D. Kuntz, Y. Kodera, A.K. Mukherjee, A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic, Scripta Mater. 56 (2007) 1103–06.

DOI: 10.1016/j.scriptamat.2007.02.003

Google Scholar

[4] K. Morita, K. Hiraga, B. -N. Kim, H. Yoshida, Y. Sakka, Synthesis of dense nanocrystalline ZrO2–MgAl2O4 spinel composite, Scripta Mater. 53 (2005) 1007-12.

DOI: 10.1016/j.scriptamat.2005.07.008

Google Scholar

[5] K. Morita, K. Hiraga, B. -N. Kim, H. Yoshida, Y. Sakka, to be submitted.

Google Scholar

[6] K. Morita, K. Hiraga, B. -N. Kim, H. Yoshida, Superplasticity of nanocrystalline ZrO2-spinel composite, Key Eng. Mater. 345-346 (2007) 573-76.

DOI: 10.4028/www.scientific.net/kem.345-346.573

Google Scholar

[7] W. -J. Kim, J. Wadsworth, O.D. Sherby, Tensile ductility of superplastic ceramics and metallic alloy, Acta Mater. 39 (1991) 199-208.

DOI: 10.1016/0956-7151(91)90268-6

Google Scholar

[8] K. Hiraga, K. Nakano, T.S. Suzuki, Y. Sakka, Processing-dependent microstructural factors affecting cavitation damage and tensile ductility in a superplastic alumina dispersed with zirconia, J. Am. Ceram. Soc. 85 (2002) 2763-70.

DOI: 10.1111/j.1151-2916.2002.tb00526.x

Google Scholar

[9] K. Morita, B. -N. Kim, K. Hiraga, H. Yoshida, Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing, Scripta Mater. 58 (2008) 1114-17.

DOI: 10.1016/j.scriptamat.2008.02.008

Google Scholar

[10] K. Morita, B. -N. Kim, K. Hiraga, H. Yoshida, Spark-plasma-sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal, J. Am. Ceram. Soc. 92 (2009) 1208-16.

DOI: 10.1111/j.1551-2916.2009.03074.x

Google Scholar

[11] K. Morita, B. -N. Kim, H. Yoshida, H. Zhang, K. Hiraga, Y. Sakka, Effect of loading schedule on densification of MgAl2O4 spinel during spark plasma sintering (SPS) processing, J Eur. Ceram. Soc. 32 (2012) 2303-09.

DOI: 10.1016/j.jeurceramsoc.2012.02.016

Google Scholar

[12] R. Apetz, M.P.B. van Bruggen, Transparent alumina: A light scattering model, J. Am. Ceram. Soc. 86 (2003) 480-86.

DOI: 10.1111/j.1151-2916.2003.tb03325.x

Google Scholar

[13] G.R. Villalobos, J.S. Sanghera, I.D. Aggarwal, Degradation of magnesium aluminum spinel by lithium fluoride sintering aid, J. Am. Ceram. Soc. 88 (2005) 1321-22.

DOI: 10.1111/j.1551-2916.2005.00209.x

Google Scholar

[14] R.J. Bratton, Translucent sintered MgAl2O4, J. Am. Ceram. Soc. 57 (1974) 283-86.

Google Scholar

[15] K. Hamano, S. Kanzaki, Fabrication of transparent spinel ceramics by reactive hot-pressing, J. Ceram. Soc. Japan 85 (1977) 225-30.

DOI: 10.2109/jcersj1950.85.981_225

Google Scholar

[16] N. Frage, S. Cohen, S. Meir, S. Kalabukhov, M.P. Dariel, Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel, J. Mater. Sci. 42 (2007) 3273-76.

DOI: 10.1007/s10853-007-1672-0

Google Scholar

[17] R. Chaim, Z. Shen, M. Nygren, Transparent nanocrystalline MgO by rapid and low- temperature spark plasma sintering, J. Mater. Res. 19 (2004) 2527-31.

DOI: 10.1557/jmr.2004.0334

Google Scholar

[18] S. Grasso, C. Hu, G. Maizza, B. -N. Kim, Y. Sakka, Effects of pressure application method on transparency of spark plasma sintered alumina, J. Am. Ceram. Soc. 94 (2010) 1405-09.

DOI: 10.1111/j.1551-2916.2010.04274.x

Google Scholar

[19] C. Wang, Z. Zhao, Transparent MgAl2O4 ceramic produced by spark plasma sintering, Scripta Mater. 61 (2009) 193-96.

DOI: 10.1016/j.scriptamat.2009.03.039

Google Scholar

[20] L. -Q. An, A. Ito, T. Goto, Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles, J. Eur. Ceram. Soc. 32 (2012) 1035-40.

DOI: 10.1016/j.jeurceramsoc.2012.03.011

Google Scholar

[21] K. Morita, B. -N. Kim, H. Yoshida, K. Hiraga, Y. Sakka, to be submitted.

Google Scholar