Preparation of Nickel Oxide-Samarium-Doped Ceria Carbonate Composite Anode Powders by Using High-Energy Ball Milling for Low-Temperature Solid Oxide Fuel Cells

Article Preview

Abstract:

The characteristics of the starting powder in powder preparation method are important for enhancement of cell performance. In this study, the composite anode powders of NiO–samarium-doped ceria carbonates (SDCC) were prepared by using different NiO loadings (50–70 wt.%) via high-energy ball milling. The composite anode powders were ball-milled in ethanol at a milling speed of 550 rpm. The obtained NiO–SDCC composite anode powders were characterized by XRD, FTIR, FESEM, and EDS. Results indicate that the composite anode powders demonstrated good chemical compatibility between NiO and SDCC, given that no new phases were detected in the XRD analysis. FTIR spectra confirmed that the composite anode powders contain carbonates in amorphous state after high-energy ball milling. FESEM investigation revealed well-distributed fine particles and significant reduction of particle size at nanoscale compared with the powder prepared using NiO particles as the starting material. EDS mapping verified the homogeneity of the composite powder with good elemental distribution. Thus, high-energy ball milling is an effective method to prepare NiO–SDCC composite anode powders within a relatively short processing time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-102

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Y. Chen, Y.R. Lyu, Effect of NiO addition on properties of bulk yttria-doped ceria sintered from their spray pyrolyzed powder, Ceram. Int. 38(4) (2012) 3291-3300.

DOI: 10.1016/j.ceramint.2011.12.036

Google Scholar

[2] A.U. Chavan, L.D. Jadhav, A.P. Jamale, S.P. Patil, C.H. Bhosale, S.R. Bharadwaj, P.S. Patil, Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites, Ceram. Int. 38(4) (2012) 3191-3196.

DOI: 10.1016/j.ceramint.2011.12.023

Google Scholar

[3] H.A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, Structure and thermal properties of La 0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–SDC carbonate composite cathodes for intermediate-to low-temperature solid oxide fuel cells, Ceram. Int. 38(2), 1571-1576.

DOI: 10.1016/j.ceramint.2011.09.043

Google Scholar

[4] L. Zhang, R. Lan, C.T.G. Petit, S. Tao, Durability study of an intermediate temperature fuel cell based on an oxide–carbonate composite electrolyte. Int. J. Hydrogen Energy, 35(13) (2010) 6934-6940.

DOI: 10.1016/j.ijhydene.2010.04.026

Google Scholar

[5] Y. Zhao, C. Xia, L. Jia, Z. Wang, H. Li, J. Yu, Y. Li, Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels. Int. J. Hydrogen Energy, 38(36) (2013) 16498-16517.

DOI: 10.1016/j.ijhydene.2013.07.077

Google Scholar

[6] T. Misono, K. Murata, T. Fukui, J. Chaichanawong, K. Sato, H. Abe, M. Naito, Ni-SDC cermet anode fabricated from NiO–SDC composite powder for intermediate temperature SOFC, J. Power Sources 157(2) (2006) 754-757.

DOI: 10.1016/j.jpowsour.2006.01.074

Google Scholar

[7] M. Kawano, H. Yoshida, K. Hashino, H. Ijichi, S. Suda, K. Kawahara, T. Inagaki, Synthesis of matrix-type NiO–SDC composite particles by spray pyrolysis with acid addition for development of SOFC cermet anode, J. Power Sources 173(1) (2007) 45-52.

DOI: 10.1016/j.jpowsour.2007.08.021

Google Scholar

[8] Q. Liu, X. Dong, C. Yang, S. Ma, F. Chen, Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells, J. Power Sources 195(6) (2010) 1543-1550.

DOI: 10.1016/j.jpowsour.2009.09.071

Google Scholar

[9] M.R. Somalu, V. Yufit, D. Cumming, E. Lorente, N.P. Brandon, Fabrication and characterization of Ni/ScSZ cermet anodes for IT-SOFCs, Int. J. Hydrogen Energy 36(9) (2011) 5557-5566.

DOI: 10.1016/j.ijhydene.2011.01.151

Google Scholar

[10] S. Ohara, R. Maric, X. Zhang, K. Mukai, T. Fukui, H. Yoshida, T. Inagaki, K. Miura, High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte: I. Ni–SDC cermet anode, J. Power Sources 86(1) (2000).

DOI: 10.1016/s0378-7753(99)00431-0

Google Scholar

[11] F.S. Torknik, A. Maghsoudipour, M. Keyanpour-Rad, G.M. Choi, S.H. Oh, G.Y. Shin,  Microstructural refinement of Ni/Ce0. 8Gd0. 2O2−δ anodes for low-temperature solid oxide fuel cell by wet infiltration loading of PdCl2, Ceram. Int. 40(8) (2014).

DOI: 10.1016/j.ceramint.2014.04.075

Google Scholar

[12] S.Y. Park, C.W. Na, J.H. Ahn, R.H. Song, J.H. Lee, reparation of highly porous NiO–gadolinium-doped ceria nano-composite powders by one-pot glycine nitrate process for anode-supported tubular solid oxide fuel cells, J. Asian Ceram. Soc. 2(4) (2014).

DOI: 10.1016/j.jascer.2014.07.005

Google Scholar

[13] T. Skalar, K. Zupan, M. Marinšek, B. Novosel, J. Maček, Microstructure evaluation of Ni–SDC synthesized with an innovative method and Ni–SDC/SDC bi-layer construction, J. Eur. Ceram. Soc. 34(2) (214) 347-354.

DOI: 10.1016/j.jeurceramsoc.2013.08.020

Google Scholar

[14] H. Seon Hong, S. Lee, C. Sunyong Lee, Characterization of (Ni–Cu)/YSZ cermet composites fabricated using high-energy ball-milling: effect of Cu concentration on the composite performance, Ceram. Int. 41(4) (2015) 6122-6126.

DOI: 10.1016/j.ceramint.2014.12.158

Google Scholar

[15] R. Jarot, A. Muchtar, W.R. Wan Daud, N. Muhamad and E.H. Majlan,  Porous NiO-SDC carbonates composite anode for LT-SOFC applications produced by pressureless sintering, Appl. Mech. Mater. 52–54 (2011) 488-493.

DOI: 10.4028/www.scientific.net/amm.52-54.488

Google Scholar

[16] I.A. Amar, C.T.G. Petit, L. Zhang, R. Lan, P.J. Skabara, S. Tao, Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode, Solid State Ionics, 201(1) (2011) 94-100.

DOI: 10.1016/j.ssi.2011.08.003

Google Scholar

[17] L. Agun, H.A. Rahman, S. Ahmad, A. Muchtar, Influence of Binary Carbonate on the Physical and Chemical Properties of Composite Cathode for Low-Temperature SOFC, Adv. Mater. Res. 1087 (2015) 177-181.

DOI: 10.4028/www.scientific.net/amr.1087.177

Google Scholar

[18] M. Chen, B. H. Kim, Q. Xu, O. J. Nam, J.H. Ko, Synthesis and performances of Ni–SDC cermets for IT-SOFC anode,  J. Eur. Ceram. Soc. 28(15) (2008) 2947-2953.

DOI: 10.1016/j.jeurceramsoc.2008.05.009

Google Scholar

[19] Y. Shilong, Y. Zhupeng, L. Chuanming, C. Xiaowei, Z. Yanwei, Theoretical description on the interface-enhanced conductivity of SDC/LiNa-carbonate composite electrolytes. Mater. Lett. 92 (2013) 78-81.

DOI: 10.1016/j.matlet.2012.10.062

Google Scholar

[20] J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in: Encyclopedia of Analytical Chemistry, John Wiley & Sons, (2000).

Google Scholar

[21] Y. Jing, J. Patakangas, P.D. Lund, B. Zhu, An improved synthesis method of ceria-carbonate based composite electrolytes for low-temperature SOFC fuel cells, Int. J. Hydrogen Energy 38(36) (2013), 16532-16538.

DOI: 10.1016/j.ijhydene.2013.05.136

Google Scholar