Surface Passivation Effect of Hydrogen and Methyl on the Structural and Electronic Properties of Silicon Quantum Dots: Density Functional Calculation

Article Preview

Abstract:

We have carried out a series of DFT calculations to investigate changes on the structural and electronic properties of Silicon (Si) quantum dots as a function of surface passivation. In particular, we have study non-polar passivation effect of hydrogen (H) and methyl (CH3) at the surface of quantum dots. From geometry optimization result, we find that clusters with reconstructed surfaces a complete methyl passivation is possible and steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. On the electronic properties point of view, it is noticed for small nanocrystals, the presence of mini-gaps are more pronounced which can limit the non-radiative relaxation of excitons. Obviously, methyl passivation weakly affects the band gap values of silicon quantum dots, while it substantially decreases the band gap and reduce mini-gap appearance compared to hydrogen passivation Si QDs. On the basis of our results we propose that methyl terminated quantum dots may be size selected taking advantage of the reduction on mini-gap and the localization of electron as a function of the cluster size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

375-382

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Belomoin, J. Therrien,; A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, and L. Mitas, Observation of a magic discrete family of ultrabright Si nanoparticles, Appl. Phys. Lett. 80 (2002) 841-843.

DOI: 10.1063/1.1435802

Google Scholar

[2] D. S. English, L. E. Pell, Z. H. Yu, P. F. Barbara, and B. A. Korgel, Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots, Nano Lett. 2 (2002) 681-685.

DOI: 10.1021/nl025538c

Google Scholar

[3] E. Rogozhina, G. Belomoin, A. Smith, L. Abuhassan, N. Barry, O. Akcakir, P. V. Braun, and M. H. Nayfeh, Si–N linkage in ultrabright, ultrasmall Si nanoparticles, Appl. Phys. Lett. 78 (2001) 3711-3713.

DOI: 10.1063/1.1377619

Google Scholar

[4] J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles, Nano Lett. 4 (2004) 1181-1186.

DOI: 10.1021/nl0497373

Google Scholar

[5] A. H. Mayne, S. C. Bayliss, P. Barr, M. Tobin, and L. D. Buckberry, Biologically interfaced porous silicon devices L. D. Phys. Stat. Solidi A 182 (2000) 505-513.

DOI: 10.1002/1521-396x(200011)182:1<505::aid-pssa505>3.0.co;2-#

Google Scholar

[6] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, and W. J. Parak, Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles, Nano Lett., 5 (2005) 331-338.

DOI: 10.1021/nl047996m

Google Scholar

[7] Y. B. Zhang, W. Chen, J. Zhang, J. Liu, G. P. Chen, and C. Pope, In vitro and in vivo toxicity of CdTe nanoparticles, J. Nanosci. Nanotech. 7 (2007) 497-503.

DOI: 10.1166/jnn.2007.125

Google Scholar

[8] D. A. B. Miller, Silicon sees the light, Nature 378 (1995) 238.

Google Scholar

[9] H. Zhang, T. C. Liu, J. H. Wang, Z. L. Huang, Y. D. Zhao, and Q. M. Luo, Development of Quantum Dots in Bioimaging, Chin. J. Analyt. Chem. 34 (2006) 1491-1495.

Google Scholar

[10] K. Matsumoto, M. Inada, I. Umezu, and A. Sugimura, Photoluminescence from Si Nanocrystals Embedded in SiOxNy Thin Films, Japan. J. Appl. Phys. 44 (2005) 8742-8746.

Google Scholar

[11] D. Bisero, F. Comi, C. Nobili, R. Tonini, G. Ottaviani, C. Mazzoleni, and L. Pavesi, Visible Photoluminescence From He-Implanted Silicon, Appl. Phys. Lett. 67 (1995) 3447-3449.

DOI: 10.1063/1.115275

Google Scholar

[12] S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, Classification and control of the origin of photoluminescence from Si nanocrystals, Nature Nanotech. 3 (2008) 174-178.

DOI: 10.1038/nnano.2008.7

Google Scholar

[13] T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Phys Rev B 67 (2003) 155108.

DOI: 10.1103/physrevb.67.155108

Google Scholar

[14] http: /avogadro. openmolecules. net.

Google Scholar

[15] A. K. Rappi, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skid, UFF a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of The American Chemical Society, 114 (1992) 10024-10035.

DOI: 10.1021/ja00051a040

Google Scholar

[16] C. G. Broyden, The convergence of a class of double rank minimization algorithms, J. Inst. Math. Appl. 6 (1970) 76.

Google Scholar

[17] R. Fletcher, A new approach to variable metric algorithms, J. Comput. 13 (1970) 317.

Google Scholar

[18] D. Goldrarb, A family of variable metric methods derived by variational means, Math. Comp. 24 (1970) 23.

Google Scholar

[19] D. F. Shanno, Conditioning of quasi-Newton methods for functional minimization, Math. Comp. 24 (1970) 647.

DOI: 10.1090/s0025-5718-1970-0274029-x

Google Scholar

[20] M. M. Anas, A. P. Othman, and G. Gopir, Structural and Electronic Properties of Hydrogen-Passivated Silicon Quantum Dots: Density Functional Calculations, Advanced Materials Research, 1107 (2015) 571-576.

DOI: 10.4028/www.scientific.net/amr.1107.571

Google Scholar

[21] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[22] A. Dargys and J. Kundrotas, Handbook on physical properties of Ge, Si, GaAs and InP, Science and Encyclopedia Publishers, Vilnius Lithuania, (1994).

Google Scholar