[1]
Chen P, Chao C, Liu T. A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy[J]. Scripta Materialia. 2013, 68(6): 380-383.
DOI: 10.1016/j.scriptamat.2012.10.034
Google Scholar
[2]
Seol J, Raabe D, Choi P, et al. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography[J]. Scripta Materialia. 2013, 68(6): 348-353.
DOI: 10.1016/j.scriptamat.2012.08.013
Google Scholar
[3]
Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0. 35 C–3. 5 Mn–5. 8 Al lightweight steel[J]. Acta Materialia. 2013, 61(13): 5050-5066.
DOI: 10.1016/j.actamat.2013.04.038
Google Scholar
[4]
Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scripta Materialia. 2013, 68(6): 343-347.
DOI: 10.1016/j.scriptamat.2012.08.038
Google Scholar
[5]
Wang T, Kao F, Wang S, et al. Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel[J]. Materials Letters. 2011, 65(2): 396-399.
DOI: 10.1016/j.matlet.2010.10.022
Google Scholar
[6]
Bartlett L S A M V. A review of the physical and mechanical properties of a cast high strength and lightweight Fe-Mn-Al-C steel[J]. 2010: 413-423.
Google Scholar
[7]
Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels[J]. JOM. 2014, 66(9): 1845-1856.
DOI: 10.1007/s11837-014-1032-x
Google Scholar
[8]
J.D. Yoo, S.W. Hwang, K.T. Park. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0. 8C steel[J]. Material Science and Engineering A, 2009, 508(1-2): 234-240.
DOI: 10.1016/j.msea.2008.12.055
Google Scholar
[9]
J.D. Yoo. Microhand-induced plasticity in a high Mn-Al-C light steel[J]. Material Science and Engineering A, 2008, 496(1-2): 417-424.
Google Scholar
[10]
E. Mazancova, Z. Jonla, K. Mazanec. Structural metallurgy properties of high manganese Fe-Mn-Al-C alloy[J]. Metals, 2008, 61(2): 13.
Google Scholar
[11]
E. Mazancova. Properties of high manganese Fe-Mn-Al-C alloys[J]. Archives Mater Sci, 2007, 28(1-4): 90.
Google Scholar
[12]
S. Gardelis, A.G. Nassiopoulou, M. Mahdouani. Enhancement and red shift of photoluminescence (PL) of fresh porous Si under prolonged laser irradiation or aging: Role of surface vibration modes[J]. Physica E. 2009(41): 986-989.
DOI: 10.1016/j.physe.2008.08.021
Google Scholar
[13]
Hosoda H, Miyazaki S, Mishima Y J. Phase Constitution of Some Intermetallics in Continuous Quaternary Pillar Phase Diagramsl[J]. Phase Rquilibria. 2001, 22(4): 394-399.
DOI: 10.1361/105497101770332947
Google Scholar
[14]
Kimura Y, Hayashi K, et al. Microstructual control for strengthening the γ-Fe/E21-(Fe, Mn)3AlCx alloys[J]. Materials Science and Engineering: A. 2002, 329-331: 680-685.
DOI: 10.1016/s0921-5093(01)01607-0
Google Scholar
[15]
Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system[J]. Journal of Materials Engineering and Performance. 2000, 9(6): 597-602.
DOI: 10.1361/105994900770345430
Google Scholar
[16]
Zhu S M, Tjong S C. Creep and Rupture Properties of an Austenitic Fe-30Mn-9Al-1C Alloy[J]. Metallurgical and Material Transactions A. 1998, 29A: 299-306.
DOI: 10.1007/s11661-998-0181-3
Google Scholar