[1]
LI Jin-feng, ZHENG Zi-qiao, REN Wen-da, CHEN Wen-jing, ZHAO, Xu-shan, LI Shi-chen. Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al-Cu-Li alloys [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(6): 1268-1273.
DOI: 10.1016/s1003-6326(07)60005-3
Google Scholar
[2]
RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications [J]. Metallurgical Materials Transactions A, 2012, 43(9): 3325-3337.
DOI: 10.1007/s11661-012-1155-z
Google Scholar
[3]
HUANG Lan-pin, ZHENG Zi-qiao, CHEN Kang-hua, et al. Study on Microstructure and properties of 2197AI-Li alloy [J]. Powder Metallurgy Materials Science and Engineering, 2003, 8(4): 299−307.
Google Scholar
[4]
JABRA J, ROMIOS M, LAI J, et al. The effect of thermal exposure on the mechanical properties of 2099-T6 die forgings, 2099-T83 extrusions, 7075-T7651 plate, 7085-T7452 die forgings, 7085-T7651 plate, and 2397-T87 plate aluminum alloys [J]. Journal of Materials Engineering and Performance.
DOI: 10.1361/105994906x136142
Google Scholar
[5]
BUCHHEIT R G, MATHUR D, GOUMA P I. Grain boundary corrosion and stress corrosion cracking studies of Al-Li-Cu alloy AF/C458 [J]. Ohio State University, Columbus, OH, undated.
DOI: 10.1002/9781118787922.ch10
Google Scholar
[6]
YOSHIMURA R, KONNO T J, ABE E, HIRAGA K. Transmission electron microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys: The θ' and T1 phases [J]. Acta Materialia, 2003, 51(14): 4251-4266.
DOI: 10.1016/s1359-6454(03)00253-2
Google Scholar
[7]
LI Hong-ying, TANG Yi, ZENG Zai-de, ZHENG Zi-qiao, ZHENG Feng. Effect of ageing time on strength and microstructures of an Al-Cu-Li-Zn-Mg-Mn-Zr alloy [J]. Materials Science and Engineering A, 2008, 498(1-2): 314-320.
DOI: 10.1016/j.msea.2008.08.001
Google Scholar
[8]
LI Hong-ying, TANG Yi, ZENG Zai-de, ZHENG Feng. Exfoliation corrosion of T6- and T8-aged AlxCuyLiz alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 778-783.
DOI: 10.1016/s1003-6326(08)60134-x
Google Scholar
[9]
ZHU Xiao-hui, ZHENG Zi-qiao, ZHONG Shen. Effect of Mg and Zn on microstructure and tensile properties of 2099 alloy [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(10): 1861-1867.
Google Scholar
[10]
WU Yue-mei, JI Xiong, LAI Ren-ming, ZHANG Xiang-yu, GUO Zhi-xing. The microstructure evolution of an Al-Mg-Si-Mn-Cu-Ce alloy during homogenization [J]. Journal of Alloys Compounds, 2009, 475(1−2): 332-338.
DOI: 10.1016/j.jallcom.2008.07.032
Google Scholar
[11]
LUMLEY R N, POLMEAR I J, MORTON A J. Interrupted aging and secondary precipitation in aluminum alloys[J]. Materials Science and Technology, 2003, 19(11): 1483−1490.
DOI: 10.1179/026708303225008112
Google Scholar
[12]
DUPASQUIER A, SOMOZA A, LUMLEY A J. Studies of secondary ageing in aluminum alloys[J]. Materials Forum, 2004, 28: 85−95.
Google Scholar
[13]
OLIVERA A F J, de BARROS M C, CARDOSO K R. The effect of RRA on the stress corrosion cracking and SCC resistance on AA7050 and AA7150 aluminum alloys[J]. Materials Science and Engineering A, 2004, 379: 321−326.
DOI: 10.1016/j.msea.2004.02.052
Google Scholar
[14]
WALLACE W, BEDDOES J C, DE MALHERBE M C. New approach to the problem of stress corrosion cracking in 7075-T6 aluminum[J]. Canadian Aeronautics and Space Journal, 1981, 27(3): 222−232.
Google Scholar
[15]
CHEN Kang-hua, LIU Hong-wei, LI Yun-zhong. Effect of temperature incremental solution heat treatment on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J]. J Central South Univ Technol, 2000, 31: 339−341.
Google Scholar