[1]
ANDRZEJEWSKA, E. Photopolymerization kinetics of multifunctional monomers. Progress in Polymer Science. 2001, v. 26, pp.605-665.
DOI: 10.1016/s0079-6700(01)00004-1
Google Scholar
[2]
STANSBURY, J. W. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dental Materials. 2012, v. 28., pp.13-22.
DOI: 10.1016/j.dental.2011.09.005
Google Scholar
[3]
BOWEN, R. L. Dental filling material comprising vinyl-silane treated fused silica and a binder consisting of the reaction product of bisphenol and glycidyl methacrylate. US patent. 3, 006, 112. (1962).
Google Scholar
[4]
ANTONUCCI, J. M., STANSBURY J. W. Molecularly designed dental polymers. Desk Reference of Functional Polymers: Syntheses and Applications. American Chemical Society, 1997, pp.719-737. ISBN 0-8412-3469-8.
Google Scholar
[5]
FERRACANE, J. L. Resin composites – State of the art. Dental Materials. 2011, v. 27, pp.29-38.
Google Scholar
[6]
JANCAR, J., WANG W., DIBENEDETTO A. T. On the heterogeneous structure of thermally cured bis-GMA/TEGDMA resins. Journal of Materials Science: Materials in Medicine. 2000, v. 11, pp.675-682.
DOI: 10.1023/a:1008999023271
Google Scholar
[7]
ANSETH, K. S., WANG, C. M., BOWMAN, C. N. Reaction behavior and kinetic constants for photo-polymerizations of multi (meth)acrylate monomers. Polymer. 1994, v. 15, pp.3243-3250.
DOI: 10.1016/0032-3861(94)90129-5
Google Scholar
[8]
DICKENS, S. H., STANSBURY J. W., CHOI K. M., FLOYD C. J. E. Photo-polymerization kinetics of methacrylate dental resins. Macromolecules. 2003, v. 36, pp.6043-6053.
DOI: 10.1021/ma021675k
Google Scholar
[9]
LOVELL, L. G., STANSBURY J. W., SYRPES D. C, BOWMAN C. N. Effects of composition and reactivity on the reaction kinetics of dimethacrylate/dimethacrylate co-polymerizations. Macromolecules. 1999, v. 32, pp.3913-3921.
DOI: 10.1021/ma990258d
Google Scholar
[10]
ANDRZEJEWSKA, E. Photo-polymerization kinetics of multifunctional monomers. Progress in Polymer Science. 2001, v. 26, pp.605-665.
DOI: 10.1016/s0079-6700(01)00004-1
Google Scholar
[11]
ABU-ELANAIN, D. A., LEWIS S. H., STANSBURY J. W. Property evolution during vitrification of dimethacrylate photopolymer networks. Dental Materials. 2013, v. 29, pp.1173-1181.
DOI: 10.1016/j.dental.2013.09.002
Google Scholar
[12]
LEPRINCE, J. G., LAMBLIN G., DEVAUX J., DEWAELE M., MESTDAGH M., PALIN W. M., GALLEZ B., LELOUP G. Irradiation mode's impact on radical entrapment in photoactive resins. Journal of Dental Research. 2010, v. 89, pp.1494-1498.
DOI: 10.1177/0022034510384624
Google Scholar
[13]
ELLIOTT, J. E., LOVELL L. G., BOWMAN C. N. Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins. Dental Materials. 2001, v. 17, pp.221-229.
DOI: 10.1016/s0109-5641(00)00075-0
Google Scholar
[14]
PFEIFER, C. S., SHELTON Z. R., BRAGA R. R., WINDMOLLER D., MACHADO J. C., STANSBURY J. W. Characterization of dimethacrylate polymeric networks: a study of the cross-linked structure formed by monomers used in dental composites. European Polymer Journal. 2011, v. 47, pp.162-170.
DOI: 10.1016/j.eurpolymj.2010.11.007
Google Scholar
[15]
DUŠEK, K. Special features of network formation by chain crosslinking copolymerization. Collection of Czechoslovak Chemical Communications. 1993, v. 58, pp.2245-2265.
DOI: 10.1135/cccc19932245
Google Scholar
[16]
BARSZCZEWSKA-RYBAREK, I. M. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dental Materials. 2009, v. 25, pp.1082-1089.
DOI: 10.1016/j.dental.2009.01.106
Google Scholar
[17]
GUO, Z., E. BROWNE, J. COMPTON, H. SAUTEREAU, D. KRANBUEHL. Dielectric, dynamic mechanical and DSC evidence for a spatial and dynamic heterogeneity in a single phase polymer system. Journal of Non-Crystalline Solids. 2006, v. 352, pp.5025-5028.
DOI: 10.1016/j.jnoncrysol.2006.01.133
Google Scholar
[18]
KRZEMINSKI, M., MOLINARI M., TROYON M, COQUERET, X. Characterization by atomic force microscopy of the nano-heterogeneities produced by the radiation-induced crosslinking polymerization of aromatic diacrylates. Macromolecules. 2010, v. 43, pp.8121-8127.
DOI: 10.1021/ma101615k
Google Scholar
[19]
TESHIMA, W., NOMURA, Y., IKEDA A., KAWAHARA T., OKAZAKI M., NAHARA Y. Thermal degradation of photo-polymerized Bis-GMA/TEGDMA based dental resins. Polymer Degradation and Stability. 2004, v. 84, pp.167-172.
DOI: 10.1016/j.polymdegradstab.2003.10.007
Google Scholar
[20]
ACHILIAS, D. S., KARABELA M. M., SIDERIDOU I. D. Thermal degradation of light-cured dimethacrylate resins: Part I. Isoconversional kinetic analysis. Thermochimica Acta. 2008, v. 472, pp.74-83.
DOI: 10.1016/j.tca.2008.02.004
Google Scholar
[21]
Radiation curing: science and technology. 1st ed. New York: Springer Science Business Media, 1992, s. 57-133. Topics in applied chemistry. ISBN 978-1-4899-0714-1.
Google Scholar
[22]
KANNURPATTI, A. R., ANSETH J. W., BOWMAN C. N. A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photo-polymerizations of multifunctional (meth) acrylates. Polymer. 1998, v. 39, pp.2507-2513.
DOI: 10.1016/s0032-3861(97)00585-5
Google Scholar
[23]
COOK, W. D., FORSYTHE J. S., IRAWATI N., SCOTT T. F., XIA W. Z. Cure kinetics and thermo-mechanical properties of thermally stable photo-polymerized dimethacrylates. Journal of Applied Polymer Science. 2003, v. 90, pp.3753-3766.
DOI: 10.1002/app.12995
Google Scholar
[24]
MESQUITA, R. V., J. G. GERSTORFER. Influence of temperature on the viscoelastic properties of direct and indirect dental composite resins. Dental Materials. 2008, v. 24, pp.623-632.
DOI: 10.1016/j.dental.2007.06.025
Google Scholar