[1]
Tian X. Y., Feng J. C., Shi J. M., et al. Brazing of ZrB2-SiC-C Ceramic and GH99 Superalloy to Form Reticular Seam with Low Residual Stress[J]. Ceram. Int., 2015, 41(1): 145-153.
DOI: 10.1016/j.ceramint.2014.08.051
Google Scholar
[2]
Kaur S., Riedel R., Ionescu E. Pressureless Fabrication of Dense Monolithic SiC Ceramics from a Polycarbosilane[J]. J. Eur. Ceram. Soc., 2014, 34(15): 3571-3578.
DOI: 10.1016/j.jeurceramsoc.2014.05.002
Google Scholar
[3]
Liang H., Yao X., Zhang H., et al. Friction and Wear Behavior of Pressureless Liquid Phase Sintered SiC Ceramic[J]. Mater. Des., 2015: 370-376.
DOI: 10.1016/j.matdes.2014.09.031
Google Scholar
[4]
Ruggles-Wrenn M. B., Pope M. T., Zens T. W. Creep Behavior in Interlaminar Shear of a Hi-Nicalon (TM)/SiC-B4C Composite at 1200 °C in Air and in Steam[J]. Mater. Sci. Eng., A, 2014, 610.
DOI: 10.1016/j.msea.2014.05.056
Google Scholar
[5]
Xu X. L., Li Z. R., Liu R. H., et al. Microstructure and Mechanical Properties of ZrB2-SiC Ceramic Composite Brazed Joint[J]. Trans. China Weld. Inst., 2014, 35(1): 59-62.
Google Scholar
[6]
Li L. B., Song Y. D., Sun Y. C. Modeling the Tensile Behavior of Unidirectional C/SiC Ceramic-Matrix Composites[J]. Mech. Compos. Mater., 2014, 49(6): 659-672.
DOI: 10.1007/s11029-013-9382-y
Google Scholar
[7]
Rider D. A., Liu K., Eloi JC., et al. Nanostructured Magnetic Thin Films from Organometallic Block Copolymers: Pyrolysis of Self-Assembled Polystyrene-block- poly(ferrocenylethylmethylsilane)[J]. Acs Nano, 2008, 2(2): 263-270.
DOI: 10.1021/nn7002629
Google Scholar
[8]
Xiong Y., Wang G., Qin J., et al. Synthesis and Characterization of a Liquid Crystalline Polyferrocenylsilane Brush[J]. J. Inorg. & Organomet. Polym. Mater., 2015, 25(1): 91-97.
DOI: 10.1007/s10904-014-0089-x
Google Scholar
[9]
Mcgrath N., Schacher F. H., Qiu H., et al. Synthesis and Crystallization-Driven Solution Self-Assembly of Polyferrocenylsilane Diblock Copolymers with Polymethacrylate Corona-Forming Blocks[J]. Polym. Chem., 2014, 5(6): 1923-(1929).
DOI: 10.1039/c3py01383a
Google Scholar
[10]
Rudolph T., Nunns A., Schwenke A. M., et al. Synthesis and Self-Assembly of Poly(ferrocenyldimethylsilane)-block-poly(2-alkyl-2-oxazoline) Block Copolymers[J]. Polym. Chem., 2014, 6: 1604-1612.
DOI: 10.1039/c4py01512f
Google Scholar
[11]
Whittell G., Manners I. Metallopolymers: New Multifunctional Materials[J]. Adv. Mater., 2007, 19(21): 3439-3468.
DOI: 10.1002/adma.200702876
Google Scholar
[12]
Wang X., Winnik M. A., Manners I. Synthesis, Self-Assembly, And Applications Of Polyferrocenylsilane Block Copolymers[J]. ChemInform, 2006, 47(2): 165-195.
DOI: 10.1002/9783527610570.ch7
Google Scholar
[13]
Hirao A., Goseki R., Ishizone T. Advances in Living Anionic Polymerization: From Functional Monomers, Polymerization Systems, to Macromolecular Architectures[J]. Macromolecules, 2014, 47(6): 1883-(1905).
DOI: 10.1021/ma401175m
Google Scholar
[14]
Zhang C., Yang Y., He J. Direct Transformation of Living Anionic Polymerization into RAFT-Based Polymerization[J]. Macromolecules, 2013, 46(10): 3985-3994.
DOI: 10.1021/ma4006457
Google Scholar
[15]
Gilroy J. B., Patra S. K., Mitchels J. M., et al. Main-Chain Heterobimetallic Block Copolymers: Synthesis and Self-Assembly of Polyferrocenylsilane-b-poly(cobaltoceniumethylene)[J]. Angew. Chem. Int. Ed., 2011, 50(26): 5851-5855.
DOI: 10.1002/anie.201008184
Google Scholar
[16]
Ni Y., Rulkens R., Manners I. Transition Metal-Based Polymers with Controlled Architectures: 65 Well-Defined Poly(ferrocenylsilane) Homopolymers and Multiblock Copolymers via the Living Anionic Ring-Opening Polymerization of Silicon-Bridged.
DOI: 10.1021/ja953805t
Google Scholar
[1]
Ferrocenophanes[J]. J. Am. Chem. Soc., 1996, 118(17): 4102-4114.
Google Scholar