Controlled Synthesis and Ceramization of Well-Defined Fe/Si/C Ceramic Precursors by Living Anionic Polymerization

Article Preview

Abstract:

Two kinds of iron-containing ceramic precursors, PFS and PS-b-PFS, were synthesized via living anionic polymerization by using ferrocenyldimethylsilane and styrene as the monomers. The structures, elemental compositions and molecular weights were characterized by FT-IR, NMR, EDS and GPC, respectively. The homopolymerization of ferrocenyldimethylsilane was simulated using computational chemistry method. The copolymerization between ferrocenyldimethylsilane and styrene was investigated by altering the ratio between monomers and initiator (n-butyllithium). The experimental results indicated that the Mn, Mw and PDi of homopolymer PFS were 6.91×103 g/mol, 8.29×103 g/mol and 1.20, respectively. Moreover, the molecular weight, structure and composition of block copolymers PS-b-PFS, were successfully controlled by changing the ratio of styrene, n-butyllithium and ferrocenyldimethylsilane. Subsequently, using such iron-containing polymers as precursors, Fe/Si/C ceramics were obtained after sintering at 1400°C. The microstructures, morphologies and elemental compositions of ceramics were characterized by SEM and EDS. The results implied the controllable preparation of spherical Fe/Si/C ceramics was achieved via the self-assembly of precursors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

579-584

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tian X. Y., Feng J. C., Shi J. M., et al. Brazing of ZrB2-SiC-C Ceramic and GH99 Superalloy to Form Reticular Seam with Low Residual Stress[J]. Ceram. Int., 2015, 41(1): 145-153.

DOI: 10.1016/j.ceramint.2014.08.051

Google Scholar

[2] Kaur S., Riedel R., Ionescu E. Pressureless Fabrication of Dense Monolithic SiC Ceramics from a Polycarbosilane[J]. J. Eur. Ceram. Soc., 2014, 34(15): 3571-3578.

DOI: 10.1016/j.jeurceramsoc.2014.05.002

Google Scholar

[3] Liang H., Yao X., Zhang H., et al. Friction and Wear Behavior of Pressureless Liquid Phase Sintered SiC Ceramic[J]. Mater. Des., 2015: 370-376.

DOI: 10.1016/j.matdes.2014.09.031

Google Scholar

[4] Ruggles-Wrenn M. B., Pope M. T., Zens T. W. Creep Behavior in Interlaminar Shear of a Hi-Nicalon (TM)/SiC-B4C Composite at 1200 °C in Air and in Steam[J]. Mater. Sci. Eng., A, 2014, 610.

DOI: 10.1016/j.msea.2014.05.056

Google Scholar

[5] Xu X. L., Li Z. R., Liu R. H., et al. Microstructure and Mechanical Properties of ZrB2-SiC Ceramic Composite Brazed Joint[J]. Trans. China Weld. Inst., 2014, 35(1): 59-62.

Google Scholar

[6] Li L. B., Song Y. D., Sun Y. C. Modeling the Tensile Behavior of Unidirectional C/SiC Ceramic-Matrix Composites[J]. Mech. Compos. Mater., 2014, 49(6): 659-672.

DOI: 10.1007/s11029-013-9382-y

Google Scholar

[7] Rider D. A., Liu K., Eloi JC., et al. Nanostructured Magnetic Thin Films from Organometallic Block Copolymers: Pyrolysis of Self-Assembled Polystyrene-block- poly(ferrocenylethylmethylsilane)[J]. Acs Nano, 2008, 2(2): 263-270.

DOI: 10.1021/nn7002629

Google Scholar

[8] Xiong Y., Wang G., Qin J., et al. Synthesis and Characterization of a Liquid Crystalline Polyferrocenylsilane Brush[J]. J. Inorg. & Organomet. Polym. Mater., 2015, 25(1): 91-97.

DOI: 10.1007/s10904-014-0089-x

Google Scholar

[9] Mcgrath N., Schacher F. H., Qiu H., et al. Synthesis and Crystallization-Driven Solution Self-Assembly of Polyferrocenylsilane Diblock Copolymers with Polymethacrylate Corona-Forming Blocks[J]. Polym. Chem., 2014, 5(6): 1923-(1929).

DOI: 10.1039/c3py01383a

Google Scholar

[10] Rudolph T., Nunns A., Schwenke A. M., et al. Synthesis and Self-Assembly of Poly(ferrocenyldimethylsilane)-block-poly(2-alkyl-2-oxazoline) Block Copolymers[J]. Polym. Chem., 2014, 6: 1604-1612.

DOI: 10.1039/c4py01512f

Google Scholar

[11] Whittell G., Manners I. Metallopolymers: New Multifunctional Materials[J]. Adv. Mater., 2007, 19(21): 3439-3468.

DOI: 10.1002/adma.200702876

Google Scholar

[12] Wang X., Winnik M. A., Manners I. Synthesis, Self-Assembly, And Applications Of Polyferrocenylsilane Block Copolymers[J]. ChemInform, 2006, 47(2): 165-195.

DOI: 10.1002/9783527610570.ch7

Google Scholar

[13] Hirao A., Goseki R., Ishizone T. Advances in Living Anionic Polymerization: From Functional Monomers, Polymerization Systems, to Macromolecular Architectures[J]. Macromolecules, 2014, 47(6): 1883-(1905).

DOI: 10.1021/ma401175m

Google Scholar

[14] Zhang C., Yang Y., He J. Direct Transformation of Living Anionic Polymerization into RAFT-Based Polymerization[J]. Macromolecules, 2013, 46(10): 3985-3994.

DOI: 10.1021/ma4006457

Google Scholar

[15] Gilroy J. B., Patra S. K., Mitchels J. M., et al. Main-Chain Heterobimetallic Block Copolymers: Synthesis and Self-Assembly of Polyferrocenylsilane-b-poly(cobaltoceniumethylene)[J]. Angew. Chem. Int. Ed., 2011, 50(26): 5851-5855.

DOI: 10.1002/anie.201008184

Google Scholar

[16] Ni Y., Rulkens R., Manners I. Transition Metal-Based Polymers with Controlled Architectures: 65 Well-Defined Poly(ferrocenylsilane) Homopolymers and Multiblock Copolymers via the Living Anionic Ring-Opening Polymerization of Silicon-Bridged.

DOI: 10.1021/ja953805t

Google Scholar

[1] Ferrocenophanes[J]. J. Am. Chem. Soc., 1996, 118(17): 4102-4114.

Google Scholar