Modulated Synthesis of UiO-67 for High Resistance to CH2Cl2

Article Preview

Abstract:

UiO-67 has been synthesized by using the acetic acid as a template via conventional electric (CE) heating method. With the same adding of acetic acid, different crystallinity and pore structure are obtained through change the order of addition of acetic acid. The BET surface area and total pore volume are 2861 m2 g-1 and 1.14 cm3 g-1 for of CE-0-3, and 1650 m2 g-1 and 0.67 m2 g-1 for CE-1-2, respectively. Although CE-0-3 has a better crystallinity, higher BET surface area and total pore volume than those of CE-1-2, CE-1-2 presents a better resistance to CH2Cl2 than CE-0-3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

609-613

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J. -S. Chang, D. -Y. Hong, Y. Kyu Hwang, S. Hwa Jhung and G. Férey: Langmuir, Vol. 24 (2008), p.7245.

DOI: 10.1021/la800227x

Google Scholar

[2] H. Furukawa, M.A. Miller and O.M. Yaghi: Journal of Materials Chemistry, Vol. 17 (2007), p.3197.

Google Scholar

[3] B. Chen, C. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.B. Lobkovsky, O.M. Yaghi and S. Dai: Angewandte Chemie, Vol. 118 (2006), p.1418.

DOI: 10.1002/ange.200502844

Google Scholar

[4] C.A. Bauer, T.V. Timofeeva, T.B. Settersten, B.D. Patterson, V.H. Liu, B.A. Simmons and M.D. Allendorf : Journal of the American Chemical Society, Vol. 129 (2007), p.7136.

Google Scholar

[5] M. Fujita, Y.J. Kwon, S. Washizu and K. Ogura: Journal of the American Chemical Society, Vol. 116 (1994), p.1151.

Google Scholar

[6] P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle and G. Férey: Angewandte Chemie, Vol. 118 (2006), p.6120.

DOI: 10.1002/ange.200601878

Google Scholar

[7] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O.M. Yaghi: Science, Vol. 295 (2002), p.469.

Google Scholar

[8] Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C and Bordiga S: Journal of the American Chemical Society, 130 (2008), p.13850.

DOI: 10.1021/ja8057953

Google Scholar

[9] J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Y. -g. Huang and K.S. Walton: Journal of Materials Chemistry A, Vol. 1 (2013), p.5642.

Google Scholar

[10] S. Chavan, J.G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M.H. Nilsen, L. Valenzano, C. Lamberti, K.P. Lillerud and S. Bordiga: Physical chemistry chemical physics : PCCP, Vol. 14 (2012), p.1614.

DOI: 10.1039/c1cp23434j

Google Scholar

[11] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and P. Behrens: Chemistry, Vol. 17 (2011), p.6643.

DOI: 10.1002/chem.201003211

Google Scholar

[12] J. Ren, H.W. Langmi, B.C. North, M. Mathe and D. Bessarabov: International Journal of Hydrogen Energy, Vol. 39 (2014), p.890.

Google Scholar

[13] V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Ferey, A. Vittadini, S. Gross and C. Serre: Angew Chem Int Ed Engl, Vol. 51 (2012), p.9267.

DOI: 10.1002/anie.201204806

Google Scholar

[14] V. Bon, V. Senkovskyy, I. Senkovska and S. Kaskel: Chem Commun (Camb), Vol. 48 (2012), p.8407.

Google Scholar

[15] W. Morris, B. Volosskiy, S. Demir, F. Gándara, P.L. McGrier, H. Furukawa, D. Cascio, J.F. Stoddart and O.M. Yaghi: Inorganic chemistry, Vol. 51 (2012), p.6443.

DOI: 10.1021/ic300825s

Google Scholar

[16] D. Feng, Z.Y. Gu, J.R. Li, H.L. Jiang, Z. Wei and H.C. Zhou: Angew Chem Int Ed Engl, Vol. 51 (2012), p.10307.

Google Scholar