Synthesis of Iron-Containing Preceramic Polymer and Preparation of Fe/Si/C Ceramics via Precursor-Derived Method

Article Preview

Abstract:

Iron-containing SiC ceramics have low specific resistivity and excellent electromagnetic properties. In this work, hyperbranched polyferrocenylsilane as the precursor of Fe/Si/C ceramics was prepared by the reaction of ferrocenyl dilithium, dichlorodimethylsilane and trichloromethylsilane. The ceramization process of the preceramic polymer from organic to inorganic was then investigated. Precursor microspheres were prepared by emulsion method, which were then pyrolyzed to obtain Fe/Si/C ceramic microspheres.The composition, structure and morphologies of the precursor and ceramics were characterized by 1H-NMR, FT-IR, TG-MS, XRD, SEM and EDS. Experimental results showed that the hyperbranched precursor was successfully synthesized, the pyrolytic process of which started at 350 °Cand almost completed above 600 °C. There was crystalline transformation from Fe5Si3 to Fe3Si as the sintering temperature increased from 1000 °C to 1400 °C. Moreover, the crystalline phase of β-SiC appeared at 1400 °C. Precursor microspheres were prepared by emulsion method. Porous ceramic microspheres were obtained after the precursor microspheres being sintered at 1400 °C, which can be applied in gas adsorption and catalyst supports.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

733-739

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Colombo P., Mera G., Riedel R., et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramicse[J]. J. Am. Ceram. Soc., 2010, 93: 1805-1837.

Google Scholar

[2] Yajima S., Hayashi J., Omori M., et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature , 1976, 5562: 683-685.

DOI: 10.1038/261683a0

Google Scholar

[3] Yajima S., Hasegawa Y., Hayashi J., et al. Synthesis of continuous silicon carbide fibre with high tensile strength and high young's modulus[J]. J. Mater. Sci., 1978, 13: 2569-2576.

DOI: 10.1007/bf02402743

Google Scholar

[4] Amoros P., Beltran D., Guillem C., et al. Synthesis and characterization of SiC /MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidicprecursors[J]. Chem. Mater., 2002, 14: 1585-1590.

DOI: 10.1021/cm011200s

Google Scholar

[5] Ishikawa T., Kohtoku Y., Kumagawa K., et al. High-strength alkali-resistant sintered SiCfibrestable to 2200℃[J]. Nature, 1998, 391: 773-774.

DOI: 10.1038/35820

Google Scholar

[6] Wang B., Wang Y., Lei Y., et al. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance[J]. J. mater. chem. a, 2014, 2: 20873-20881.

DOI: 10.1039/c4ta04847d

Google Scholar

[7] Yu Y., GuoY., Cheng X., et al. Preparation of TiO2/SiO2 composite fiber by thermal decomposition of polycarbosilane–tetrabutyltitanate hybrid precursor[J]. J. Mater. Chem., 2009, 19: 5637-5642.

DOI: 10.1039/b905860e

Google Scholar

[8] Kakimoto K. I., Shimoo T., Okamura K. Oxidation-induced microstructural change of Si-Ti-C-O fibers[J]. J. Am. Ceram. Soc., 1998, 81: 409-412.

DOI: 10.1111/j.1151-2916.1998.tb02348.x

Google Scholar

[9] Wang H., Gao B., Chen X., et al. Synthesis and pyrolysis of a novel preceramic polymer PZMS from PMS to fabricate high-temperature-resistant ZrC/SiC ceramic composite[J]. Appl. Organomet. Chem., 2013, 27: 166-173.

DOI: 10.1002/aoc.2959

Google Scholar

[10] Ishikawa T., Kohtoku Y., Kumagaea K. Production mechanism of polyzirconocarbosilane using zirconium (IV) acetylacetonate and its conversion of the polymer into inorganic materials[J]. J. Mater. Sci., 1998, 33: 161-166.

Google Scholar

[11] Yamaoka H., Ishikawa T., Kumagawa K. Excellent heat resistance of Si-Zr-C-O fibre[J]. J. Mater. Sci., 1999, 34: 1333-1339.

Google Scholar

[12] Wen Y., Hiroshi A., Akira K., et al. Growing SiCnanowires on tyranno-SA SiCfibers[J]. J. Am. Ceram. Soc., 2004, 87: 733-735.

Google Scholar

[13] Dhamne A., Xu W., Fookes B., et al. Polymer–ceramic conversion of liquid polyaluminasilazanes for SiAlCNceramics[J]. J. Am. Ceram. Soc. 2005 , 88: 2415-2419.

DOI: 10.1111/j.1551-2916.2005.00481.x

Google Scholar

[14] Yu Y., An L., Chen Y., et al. Synthesis of SiFeCmagnetoceramics from reverse polycarbosilane-based microemulsions[J]. J. Am. Ceram. Soc., 2010, 93: 3324-3329.

Google Scholar

[15] ZaheerM., SchmalzT., MotzG., et al. Polymer derived non-oxide ceramics modified with late transition metals[J]. Chem. Soc. Rev., 2012, 41: 5102-5116.

DOI: 10.1039/c2cs15326b

Google Scholar

[16] Sun Q., Lam J. W. Y., Xu. K., et al. Nanocluster-containing mesoporous magnetoceramics from hyperbranchedorganometallic polymer precursors[J]. Chem. Mater., 2000, 12: 2617-2624.

DOI: 10.1021/cm000094b

Google Scholar

[17] Häußler M., Sun Q., Xu k., et al. Hyperbranchedpoly(ferrocenylene)s containing groups 14 and 15 elements: Syntheses, optical and thermal properties, and pyrolytic transformations into nanostructured magnetoceramics[J]. J. Inorg. Organomet. P., 2005, 15: 67-81.

DOI: 10.1007/s10904-004-2379-1

Google Scholar

[18] Francis A., Ionescu E., Fasel C., et al. Crystallization behavior and controlling mechanism of iron-containing Si-C-N ceramics[J]. Inorg. Chem., 2009, 48: 10078-10083.

DOI: 10.1021/ic900934u

Google Scholar

[19] Thomas K. R., Ionescu A., Gwyther J., et al. Magnetic properties of ceramics from the pyrolysis of metallocene-based polymers doped with palladium[J]. J. Appl. Phys., 2011, 109: 073904.

DOI: 10.1063/1.3558987

Google Scholar

[20] Rider D. A., Cavicchi K. A., Power-Billard K. N., et al. Diblockcopolymers with amorphous atacticpolyferrocenylsilaneblocks: Synthesis, characterization, and self-Assembly of polystyrene-block-poly(ferrocenylethylmethylsilane) in the bulk State[J]. Macromolecules, 2005, 38: 6931-6938.

DOI: 10.1021/ma047410i

Google Scholar