[1]
Colombo P., Mera G., Riedel R., et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramicse[J]. J. Am. Ceram. Soc., 2010, 93: 1805-1837.
Google Scholar
[2]
Yajima S., Hayashi J., Omori M., et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature , 1976, 5562: 683-685.
DOI: 10.1038/261683a0
Google Scholar
[3]
Yajima S., Hasegawa Y., Hayashi J., et al. Synthesis of continuous silicon carbide fibre with high tensile strength and high young's modulus[J]. J. Mater. Sci., 1978, 13: 2569-2576.
DOI: 10.1007/bf02402743
Google Scholar
[4]
Amoros P., Beltran D., Guillem C., et al. Synthesis and characterization of SiC /MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidicprecursors[J]. Chem. Mater., 2002, 14: 1585-1590.
DOI: 10.1021/cm011200s
Google Scholar
[5]
Ishikawa T., Kohtoku Y., Kumagawa K., et al. High-strength alkali-resistant sintered SiCfibrestable to 2200℃[J]. Nature, 1998, 391: 773-774.
DOI: 10.1038/35820
Google Scholar
[6]
Wang B., Wang Y., Lei Y., et al. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance[J]. J. mater. chem. a, 2014, 2: 20873-20881.
DOI: 10.1039/c4ta04847d
Google Scholar
[7]
Yu Y., GuoY., Cheng X., et al. Preparation of TiO2/SiO2 composite fiber by thermal decomposition of polycarbosilane–tetrabutyltitanate hybrid precursor[J]. J. Mater. Chem., 2009, 19: 5637-5642.
DOI: 10.1039/b905860e
Google Scholar
[8]
Kakimoto K. I., Shimoo T., Okamura K. Oxidation-induced microstructural change of Si-Ti-C-O fibers[J]. J. Am. Ceram. Soc., 1998, 81: 409-412.
DOI: 10.1111/j.1151-2916.1998.tb02348.x
Google Scholar
[9]
Wang H., Gao B., Chen X., et al. Synthesis and pyrolysis of a novel preceramic polymer PZMS from PMS to fabricate high-temperature-resistant ZrC/SiC ceramic composite[J]. Appl. Organomet. Chem., 2013, 27: 166-173.
DOI: 10.1002/aoc.2959
Google Scholar
[10]
Ishikawa T., Kohtoku Y., Kumagaea K. Production mechanism of polyzirconocarbosilane using zirconium (IV) acetylacetonate and its conversion of the polymer into inorganic materials[J]. J. Mater. Sci., 1998, 33: 161-166.
Google Scholar
[11]
Yamaoka H., Ishikawa T., Kumagawa K. Excellent heat resistance of Si-Zr-C-O fibre[J]. J. Mater. Sci., 1999, 34: 1333-1339.
Google Scholar
[12]
Wen Y., Hiroshi A., Akira K., et al. Growing SiCnanowires on tyranno-SA SiCfibers[J]. J. Am. Ceram. Soc., 2004, 87: 733-735.
Google Scholar
[13]
Dhamne A., Xu W., Fookes B., et al. Polymer–ceramic conversion of liquid polyaluminasilazanes for SiAlCNceramics[J]. J. Am. Ceram. Soc. 2005 , 88: 2415-2419.
DOI: 10.1111/j.1551-2916.2005.00481.x
Google Scholar
[14]
Yu Y., An L., Chen Y., et al. Synthesis of SiFeCmagnetoceramics from reverse polycarbosilane-based microemulsions[J]. J. Am. Ceram. Soc., 2010, 93: 3324-3329.
Google Scholar
[15]
ZaheerM., SchmalzT., MotzG., et al. Polymer derived non-oxide ceramics modified with late transition metals[J]. Chem. Soc. Rev., 2012, 41: 5102-5116.
DOI: 10.1039/c2cs15326b
Google Scholar
[16]
Sun Q., Lam J. W. Y., Xu. K., et al. Nanocluster-containing mesoporous magnetoceramics from hyperbranchedorganometallic polymer precursors[J]. Chem. Mater., 2000, 12: 2617-2624.
DOI: 10.1021/cm000094b
Google Scholar
[17]
Häußler M., Sun Q., Xu k., et al. Hyperbranchedpoly(ferrocenylene)s containing groups 14 and 15 elements: Syntheses, optical and thermal properties, and pyrolytic transformations into nanostructured magnetoceramics[J]. J. Inorg. Organomet. P., 2005, 15: 67-81.
DOI: 10.1007/s10904-004-2379-1
Google Scholar
[18]
Francis A., Ionescu E., Fasel C., et al. Crystallization behavior and controlling mechanism of iron-containing Si-C-N ceramics[J]. Inorg. Chem., 2009, 48: 10078-10083.
DOI: 10.1021/ic900934u
Google Scholar
[19]
Thomas K. R., Ionescu A., Gwyther J., et al. Magnetic properties of ceramics from the pyrolysis of metallocene-based polymers doped with palladium[J]. J. Appl. Phys., 2011, 109: 073904.
DOI: 10.1063/1.3558987
Google Scholar
[20]
Rider D. A., Cavicchi K. A., Power-Billard K. N., et al. Diblockcopolymers with amorphous atacticpolyferrocenylsilaneblocks: Synthesis, characterization, and self-Assembly of polystyrene-block-poly(ferrocenylethylmethylsilane) in the bulk State[J]. Macromolecules, 2005, 38: 6931-6938.
DOI: 10.1021/ma047410i
Google Scholar