[1]
H. Andersson, A.V.D. Berg Lab-on-Chips for Cellomics: Micro and Nanotechnologies for Life science Kluwer Academic, London (2004) p.171–196.
DOI: 10.1007/978-1-4020-2975-2
Google Scholar
[2]
O. Geschk, H. Klank, P. Telleman Microsystem Engineering of Lab-on-a-Chip Devices Wiley-VCH, Weinheim (2008) p.1–7.
Google Scholar
[3]
G. Medoro, N. Manaresi, A. Leonardi, L. Altomare, M. Tartagni, R. Guerrieri A lab-on-a-chip for cell detection and manipulation IEEE Sens. J., 3 (2003), p.317–325.
DOI: 10.1109/jsen.2003.814648
Google Scholar
[4]
O. Hofmann, P. Niedermann, A. Manz Modular approach to fabrication of three-dimensional microchannel systems in PDMS—application to sheath flow microchips Lab Chip, 1 (2001), p.108–114.
DOI: 10.1039/b105110p
Google Scholar
[5]
Q Humayun, U Hashim, Morphological, Structural and UV Sensing Properties of Fe-Doped ZnO Nanorods, Advanced Materials Research, (2015), no, 1109, 200-204.
DOI: 10.4028/www.scientific.net/amr.1109.200
Google Scholar
[6]
Q Humayun, U Hashim Structural, Morphological and Optical Properties of Sol-Gel Derived ZnO Thin Film for UV Sensing Application, Advanced Materials Research, (2015), no, 1109, 304-308.
DOI: 10.4028/www.scientific.net/amr.1109.304
Google Scholar
[7]
M. Svedberg, M. Veszelei, J. Axelsson, M. Vangbo, F. Nikolajeff Poly(dimethylsiloxane) microchip: microchannel with integrated open electrospray tip Lab Chip, 4 (2004), p.322–327.
DOI: 10.1039/b402490g
Google Scholar
[8]
H.B. Yu, G.Y. Zhou, F.K. Chau, F.W. Lee Optoluidic variable aperture Opt. Lett., 33 (2008), p.548–550.
Google Scholar
[9]
C.L. Bliss, J.N. McMullin, C.J. Backhouse Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis Lab Chip, 7 (2007), p.1280–1287.
DOI: 10.1039/b708485d
Google Scholar
[10]
Q. Humayun and U. Hashim, Recent advancement in mi crogap electrode fabrication by conventional photolithography technique, 10th IEEE International Conference on Semiconductor Electronics, Icse 2012 – Proceedings (2012) 22-25.
DOI: 10.1109/smelec.2012.6417082
Google Scholar
[11]
Q. Humayun and U. Hashim, Effect of pH on the capacitive behavior of microgap sensor, IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2012 art. no. 6498092 (2012) 383-386.
DOI: 10.1109/iecbes.2012.6498092
Google Scholar
[12]
Q. Humayun and U. Hashim, Microstructure pattern etching by reactive ion etching (RIE) for future reproductivity of nanogap biosensor, IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2012 , art. no. 6498101(2012) 499-502.
DOI: 10.1109/iecbes.2012.6498101
Google Scholar
[13]
Q. Humayun and U. Hashim, Parametric study and thickness evaluation of photoresist development for the formation of microgap electrodes using surface nanoprofiler, Advanced Materials Research 626 (2013) 942-947.
DOI: 10.4028/www.scientific.net/amr.626.942
Google Scholar
[14]
Q. Humayun and U. Hashim, A brief review of the current technologies used for the fabrication of metal-molecule-metal junction electrodes, Advanced Materials Research 626 (2013) 867-877.
DOI: 10.4028/www.scientific.net/amr.626.867
Google Scholar