Dynamic Colour Change of Multifunctional Thermochromic-Fluorescent Pigments

Article Preview

Abstract:

The aim of presented paper was to prepare and characterise multifunctional thermochromic-fluorescent pigments with potential application in anti-counterfeiting patterns in security printing. Pigments were prepared by microencapsulation of chosen thermochromic system into melamine formaldehyde resin and the resin was modified with Uranine and Acid Red 52 fluorescent dyes, respectively. The fluorescence at low and high temperature was measured by spectrofluorometer. The concentration of 2.3 × 10–5 grams of fluorescent dye per one gram of polymer is sufficient for detection of fluorescence of modified polymeric shell. The dynamic colour change of prepared pigments was analysed in terms of cumulative colour difference obtained from reflectance measurements. Resulting multifunctional pigments exhibit much lower colour contrast and wider temperature sensitive interval in comparison with the bulk thermochromic system. However, the concept of two levels of verification based on two types of colour change embodied in one pigment has been approved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-168

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Seeboth and D. Lötzsch, Thermochromic and Thermotropic Materials, Singapore: Pan Stanford Publishing, 2014, doi: 10. 4032/9789814411035.

Google Scholar

[2] M.A. White and M. LeBlanc, Thermochromism in commercial products, J Chem Educ, 76 (1999), 1201–5, doi: 10. 1021/ed076p1201.

Google Scholar

[3] A. Seeboth and D. Lötzsch, Thermochromic Phenomena in Polymers, Shawbury: Smithers Rapra, 2008, ISBN 9781847351128.

Google Scholar

[4] A. Seeboth, A. Klukowska, R. Ruhmann, and D. Lötzsch, Thermochromic polymer materials, Chin J Polym Sci, 25(2007) 123–35, doi: 10. 1142/S0256767907001923.

Google Scholar

[5] R. Kulčar et al., Dynamic Colour and Appearance of Thermochromic Offset Inks, in Proc. 5th International Symposium on Novelties in Graphics, Faculty of Natural Sciences and Engineering, Ljubljana, 2010, p.795–800, ISBN: 978-961-6045-79-7.

Google Scholar

[6] R. Kulčar, M. Friškovec, N. Hauptman, A. Vesel, and M. Klanjšek Gunde, Colorimetric properties of reversible thermochromic printing inks, Dyes Pigm, 86 (2010) 271–7, doi: 10. 1016/j. dyepig. 2010. 01. 014.

DOI: 10.1016/j.dyepig.2010.01.014

Google Scholar

[7] R. Kulčar, M. Friškovec, M. Klanjšek Gunde, and N. Knešaurek, Dynamic colorimetric properties of mixed thermochromic printing inks, Color Technol, 127 (2011) 411–7, doi: 10. 1111/j. 1478-4408. 2011. 00338. x.

DOI: 10.1111/j.1478-4408.2011.00338.x

Google Scholar

[8] M. Friškovec, R. Kulčar, and M. Klanjšek Gunde, Light fastness and high-temperature stability of thermochromic printing inks, Color Technol, 129 (2013) 214–22, doi: 10. 1111/cote. 12020.

DOI: 10.1111/cote.12020

Google Scholar

[9] M. Klanjšek Gunde et al., Functional properties of the leco dye-based thermochromic printing inksů, Proc. 63rd Annual Technical Conference Proceedings, Technical Association of the Graphic Arts, Pittsburgh, 2011, p.206–33.

Google Scholar

[10] H. Tang, D.C. MacLaren, and M.A. White, New insights concerning the mechanism of reversible thermochromic mixtures, vCan J Chem, 88 (2010) 1063–70, doi: 10. 1139/V10-069.

DOI: 10.1139/v10-069

Google Scholar

[11] O. Panák, N. Hauptman, M. Klanjšek Gunde, and M. Kaplanová, Colorimetric characterisation of thermochromic composites with different molar ratios of components, J Print Media Technol Res 1 (2012) 113–20, doi: 10. 14622/JPMTR-1204.

Google Scholar

[12] O. Panák, M. Držková, and M. Kaplanová, Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature, Dyes Pigm, 120 (2015) 754–62, doi: 10. 1016/j. dyepig. 2015. 04. 022.

DOI: 10.1016/j.dyepig.2015.04.022

Google Scholar

[13] M. Hajzeri, K. Bašnec, M. Bele, and M. Klanjšek Gunde, Influence of developer on structural, optical and thermal properties of a benzofluoran-based thermochromic composite, Dyes Pigm, 113 (2015) 279–87, doi: 10. 1016/j. dyepig. 2014. 10. 014.

DOI: 10.1016/j.dyepig.2014.10.014

Google Scholar

[14] D. MacLaren and M.A. White, Design rules for reversible thermochromic mixtures, J Mater Sci, 40 (2005) 669–76, doi: 10. 1007/s10853-005-6305-x.

DOI: 10.1007/s10853-005-6305-x

Google Scholar

[15] A.N. Bourque and M.A. White, Control of thermochromic behaviour in crystal violet lactone (CVL)/alkyl gallate/alcohol ternary mixtures, Canad J Chem, 93 (2015) 22–31, doi: 10. 1139/cjc-2014-0251.

DOI: 10.1139/cjc-2014-0251

Google Scholar

[16] S. Burkinshaw, J. Griffiths, and A. Towns, Reversibly thermochromic systems based on pH-sensitive spirolactone-derived functional dyes, J Mater Chem, 8 (1998) 2677–83, doi: 10. 1039/a805994b.

DOI: 10.1039/a805994b

Google Scholar

[17] J. Luthern and A. Peredes, Determination of the stoichiometry of a thermochromic color complex via Job's method, J Mater Sci Lett, 19 (2000) 185–8, doi: 10. 1023/A: 1006790104175.

Google Scholar

[18] J. Luthern and A. Peredes, Determination of the stoichiometry of a thermochromic color complex via the method of continuous variation, J Mater Sci Lett, 22 (2003) 881–4, doi: 10. 1023/A: 1024410703372.

Google Scholar

[19] Y. Ono and F. Katsuyuki, inventors. The Pilot Ink Co., Ltd, assignee. Thermochromic coloring color-memory composition and thermochromic coloring color-memory microcapsule pigment containing the same, US 7494537 B2, 2012 07/17.

Google Scholar

[20] K. Tsutsui et al., inventors. Ricoh Company L, assignee, Method of reversible recording, EP 0 576 015 B1, (1998).

Google Scholar

[21] C. Zhu and A. Wu, "Studies on the synthesis and thermochromic properties of crystal violet lactone and its reversible thermochromic complexes, Thermochim Acta, 425 (2005) 7–12, doi: 10. 1016/j. tca. 2003. 08. 001.

DOI: 10.1016/j.tca.2003.08.001

Google Scholar

[22] A. Kondo, Microencapsulation utilizing in-liquid drying process (complex emulsion method), in Microcapsule Processing and Technology, J.W. van Valkenburg, ed., New York: Marcel Dekker Inc, 1979, ISBN 0-8247-6957-4.

Google Scholar

[23] M. Palanikkumaran, K.K. Gupta, A.K. Agrawal, and M. Jassal, Highly Stable Hexamethylolmelamine Microcapsules Containing N-Octadecane Prepared by in Situ Encapsulation, J of Appl Polym Sci, 114 (2009) 2997–3002, doi: 10. 1002/app. 30923.

DOI: 10.1002/app.30923

Google Scholar

[24] B. Alic, U. Sebenik, and M. Krajnc, Differential Scanning Calorimetric Examination of Melamine-Formaldehyde Microcapsules Containing Decane, J of Appl Polym Sci, 119 (2011) 3687–95, doi: 10. 1002/app. 33077.

DOI: 10.1002/app.33077

Google Scholar

[25] B. Boh, E. Knez, and M. Staresinic, Microencapsulation of Higher Hydrocarbon Phase Change Materials by in Situ Polymerization, J of Microencapsul, 22 (2005) 715–35, doi: 10. 1080/02652040500162139.

DOI: 10.1080/02652040500162139

Google Scholar

[26] I. Krupa et al., Phase Change Materials Based on High-Density Polyethylene Filled with Microencapsulated Paraffin Wax, Energy Convers and Manag, 87(2014) 400–9; doi: 0. 1016/j. enconman. 2014. 06. 061.

DOI: 10.1016/j.enconman.2014.06.061

Google Scholar

[27] B. Sumiga et al., Production of Melamine-Formaldehyde PCM Microcapsules with Ammonia Scavenger used for Residual Formaldehyde Reduction, Acta Chim Slov; 58(2011) 14–25; ISSN 1318-0207.

Google Scholar

[28] J. Karpiuk, Dual Fluorescence from Two Polar Excited States in One Molecule. Structurally Additive Photophysics of Crystal Violet Lactone, J of Phys Chem A, 108 (2004) 11183–95, doi: 10. 1021/jp0474935.

DOI: 10.1021/jp0474935

Google Scholar