Effect of Annealing on Room Temperature Multiferroics of BiFe1-xCoxO3

Article Preview

Abstract:

We studied the effect of annealing and Co ion doping on the structure, leakage current, ferroelectric polarization and magnetism of BiFeO3 samples. X-ray diffraction patterns demonstrate that an appropriate Co doping concentration is favor of suppressing the secondary phase but annealing treatment is apt to the growth of both the main and the secondary phases. The current density as a function of an electric field indicates that Co doping increases the leakage current density as samples before annealing but suppresses it after annealing. Annealing treatment improves the leakage for Co-doped sample and reduces it for the undoped sample. Ferroelectric hysteresis loops reflect that Co ions doping is liable to increase the ferroelectric polarization, while the sample is annealed it will do opposite effect. However the annealing treatment do improve the ferroelectricity for pure BiFeO3 sample. The magnetic hysteresis at room temperature shows the obvious enhancement of ferromagnetic properties with the sample after annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Fiebig, T. Lottermoser, D. Fröhlich, A.V. Golsev, and R.V. Pisarev, Observation of coupled magnetic and electric domains, Nature (London) 419 (2002) 818-820.

DOI: 10.1038/nature01077

Google Scholar

[2] D. Lebeugle, D. Colson, A. Forget, and M. Viret, Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields, Appl. Phys. Lett. 91 (2007) 22907-22909.

DOI: 10.1063/1.2753390

Google Scholar

[3] I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, Spiral magnetic-ordering in bismuth ferrite, J. Phys. C: Solid state Phys. 15 (1982) 4835-4846.

DOI: 10.1088/0022-3719/15/23/020

Google Scholar

[4] F. Kubel, and H. Schmid, Structure of a ferroelectric and ferroelastic monodmain crystal of the perovskite BiFeO3, Acta Crystallogr. Sect. B: Struct. Sci. 46 (1990) 698-702.

DOI: 10.1107/s0108768190006887

Google Scholar

[5] Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J. -M. Liu, and Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (2004) 1731-1733.

DOI: 10.1063/1.1667612

Google Scholar

[6] J.R. Teague, R. Gerson, and W.J. James, Dielectric hysteresis in single crystal BiFeO3, Solid State Commun. 8 (1970) 1073-1074.

DOI: 10.1016/0038-1098(70)90262-0

Google Scholar

[7] B. Ruette, S. Zvyagin. A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, and D. Viehland, Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order, Phys. Rev. B. 69 (2004).

DOI: 10.1103/physrevb.69.064114

Google Scholar

[8] V.L. Mathe, K.K. Patankar, R.N. Patil, and C.D. Lokhande, Synthesis and dielectric properties of Bi1-xNdxFeO3 perovskites, J. Magn. Magn. Mater. 270 (2004) 380-388.

DOI: 10.1016/j.jmmm.2003.09.004

Google Scholar

[9] G.L. Yuan, S.W. Or, J. -M. Liu, and Z.G. Liu, Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics, Appl. Phys. Lett. 89 (2006) 52905-52907.

DOI: 10.1063/1.2266992

Google Scholar

[10] G.L. Yuan, S.W. Or, and H.L.W. Chan, Structural transformation and ferroelectric-paraelectric phase transition in Bi1-xLaxFeO3 (x = 0-0. 25) multiferroic ceramics, J. Phys. D: Appl. Phys. 40 (2007) 1196-1200.

DOI: 10.1088/0022-3727/40/4/043

Google Scholar

[11] Q.Y. Xu. H.F. Zai, D. Wu, T. Qiu, and M.X. Xu, The magnetic properties of Bi(Fe0. 95Co0. 05)O3 ceramics, Appl. Phys. Lett. 95 (2009) 112510-112513.

DOI: 10.1063/1.3233944

Google Scholar

[12] H. Naganuma, J. Miura, and S. Okamura, Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films, Appl. Phys. Lett. 93 (2008) 52901-52903.

DOI: 10.1063/1.2965799

Google Scholar

[13] F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Preparation and photoabsorption characterization of BiFeO3 nanowires, Appl. Phys. Lett. 89 (2006) 102506-102508.

DOI: 10.1063/1.2345825

Google Scholar

[14] B.S. Soram, B.S. Ngangom, and H.B. Sharma, Effect of annealing temperatures on the structural and optical properties of sol-gel processed nanocrystalline BiFeO3 thin films, Thin Solid Films. 524 (2012) 57-61.

DOI: 10.1016/j.tsf.2012.09.015

Google Scholar

[15] H. Naganuma, J. Miura, M. Nakajima, H. Shima, S. Okamura, S. Yasur, H. Funakubo, K. Nishida, T. Iijima, M. Azuma, Y. Ando, K. Kamishima, K. Kakizaki, and N. Hiratsuka, Annealing temperature dependences of ferroelectric and magnetic properties in polycrystalline Co-substituted BiFeO3 films, Japn. J. Appl. Phys. 47 (2008).

DOI: 10.1143/jjap.47.7574

Google Scholar

[16] H. Naganuma, J. Miura, and S. Okamura, Annealing temperature effect on ferroelectric and magnetic properties in Mn-added polycrystalline BiFeO3 films, J. Electroceram. 22 (2009) 203-208.

DOI: 10.1007/s10832-007-9400-3

Google Scholar

[17] Q.Y. Xu, X.H. Zheng, L.Y. Wang, Y. Zhang, D.H. Wang, and M.X. Xu, The structural and multiferroic properties of (Bi1-xLax)(Fe0. 95Co0. 05)3 ceramics, Physica B. 407 (2012) 4793-4796.

DOI: 10.1016/j.physb.2012.09.021

Google Scholar

[18] Y. Wang, Q.H. Jiang, H.C. He, and C.W. Nan, Multiferroic BiFeO3 thin films prepared via a simple sol-gel method, Appl. Phys. Lett. 88 (2006) 1425031-1425033.

DOI: 10.1063/1.2213200

Google Scholar