Study on Titanized Layer Microstructure of T10 Steel by Double Glow Plasma Surface Alloying Technique

Article Preview

Abstract:

The titanized layer was prepared on the surface of T10 steel using a double glow plasma surface alloying (DGPSA) technique. The titanized layer was characterized by SEM and scratch tester. Results showed that the TiC layer with a thickness of 1.5~8.5μm was formed on the sample surface at the range of 900°C to 1100°C for the holding time from 2h to 6h, which was homogeneous, dense, and metallurgically combined with the substrate. The Ti concentration gradually decreased from surface to the matrix. The diffusion activation energy of Ti during double glow plasma titanizing was also estimated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-176

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Hubera, D. Manova, S. Mandl, B. Rauschenbach, Formation of TiN, TiC and TiCN by metal plasma immersion ion implantation and deposition, Surf. Coat. Technol. 174-175 (2003) 1243-1247.

DOI: 10.1016/s0257-8972(03)00458-4

Google Scholar

[2] J. Soldan, J. Musil, Structure and mechanical properties of DC magnetron sputtered TiC/Cu films, Vacuum. 81 (2006) 531-538.

DOI: 10.1016/j.vacuum.2006.07.013

Google Scholar

[3] M. Karbasi, M.R.Z. Ghavidel, A. Saidi, S. Sabooni, Comparison between tribological behaviour of HVOF coatings produced from conventional Ni+TiC powder mixture and Ni-TiC Ni-(Ti, W)C composite powders, Surf. Eng. 28 (2012) 155-163.

DOI: 10.1179/1743294411y.0000000081

Google Scholar

[4] Z.X. Wang, Z.Y. He, Y.Q. Wang, X.P. Liu, B. Tang, Microstructure and tribological behaviors of Ti6Al4V alloy treated by plasma Ni alloying, Appl. Surf. Sci. 257 (2011) 10267-10272.

DOI: 10.1016/j.apsusc.2011.07.040

Google Scholar

[5] Z. Xu, X. Liu, P. Zhang, Y. Zhang, G. Zhang, Z. He, Double glow plasma surface alloying and plasma nitriding, Surf. Coat. Technol. 201 (2007) 4822-4825.

DOI: 10.1016/j.surfcoat.2006.07.187

Google Scholar

[6] X. Zhang, X.S. Xie, Z.M. Yang, J.X. Dong, Z. Xu, Y. Gao, T.H. Zhang, A study of nickel-based corrosion resisting alloy layer obtained by double glow plasma surface alloying technique, Surf. Coat. Technol. 131 (2000) 378-382.

DOI: 10.1016/s0257-8972(00)00818-5

Google Scholar

[7] X. Jiang, X. Zhang, X.S. Xie, Z. Xu, W.J. Liu, Ni-based superalloy surface alloying by double-glow plasma surface alloying technique, Vacuum. 72 (2004) 489-500.

DOI: 10.1016/j.vacuum.2003.11.001

Google Scholar

[8] J. Huang, P.Z. Zhang, H.Y. Wu, W.J. Bao, Investigation of W-Mo alloyed layer synthesised by double glow plasma surface metallurgy, Surf. Eng. 27 (2011) 113-117.

DOI: 10.1179/026708410x12506870724433

Google Scholar

[9] Z.F. Chen, W.P. Wu, L.B. Wang, Y. Zhang, Microstructure and analytic equation of conical aggregate in iridium coating prepared by double glow plasma, Surf. Eng. 27 (2011) 242-245.

DOI: 10.1179/174329409x397787

Google Scholar

[10] Z.H. Li, S.S. Liu, Z.Y. Chen, Study on plasma discharge parameters in double-glow plasma surface alloying furnace, Vacuum. 83 (2009) 801-804.

DOI: 10.1016/j.vacuum.2008.07.013

Google Scholar

[11] W.B. Wang, Z. Xu, Z.Y. He, Z.X. Wang, P.Z. Zhang, Study on double-glow plasma niobium surface alloying of pure titanium, Vacuum. 81 (2007) 937-942.

DOI: 10.1016/j.vacuum.2006.09.008

Google Scholar

[12] X.P. Liu, Y. Gao, Z.H. Li, Z. Xu, W.H. Tian, B. Tang, Cr-Ni-Mo-Co surface alloying layer formed by plasma surface alloying in pure iron, Appl. Surf. Sci. 252 (2006) 3894-3902.

DOI: 10.1016/j.apsusc.2005.06.001

Google Scholar

[13] X.N. Cong, Z.F. Chen, W.P. Wu, J. Xu, F.E. Boafo, A novel Ir-Zr gradient coating prepared on Mo substrate by double glow plasma, Appl. Surf. Sci. 258 (2012) 5135-5140.

DOI: 10.1016/j.apsusc.2012.01.149

Google Scholar

[14] J.Y. Xu, Y.P. Liu, J.Z. Wang, X.Y. Kui, Y. Gao, Z. Xu, A study on double glow plasma surface metallurgy Mo-Cr high speed steel of carbon steel, Surf. Coat. Technol. 201 (2007) 5093-5096.

DOI: 10.1016/j.surfcoat.2006.07.221

Google Scholar

[15] H.Y. Wu, P.Z. Zhang, L. Wang, H.F. Zhao, Z. Xu, The role of process parameters in plasma surface chromising of Ti2AlNb-based alloys, Appl. Surf. Sci. 256 (2009) 1333-1340.

DOI: 10.1016/j.apsusc.2009.07.076

Google Scholar

[16] W.P. Liang, Z. Xu, Q. Miao, X.P. Liu, Z.Y. He, study on mo diffusion in double glow plasma surface molybdenizing of Ti2AlNb, Chinese. J. Aero. 8 (2006) 255-259.

DOI: 10.1016/s1000-9361(11)60353-1

Google Scholar

[17] Z.Y. He, Y. Gao, F.Y. Gu, Z. Xu, Behavior of ion bombardment in Xu-TEC process, Vacuum. 1 (1995) 29-35.

Google Scholar

[18] L. Qin, K.K. Yang, C.S. Liu, B. Tang, Enhanced plasma boriding with molybdenum using double glow plasma surface alloying technique, Mater. Lett. 82 (2012) 127-129.

DOI: 10.1016/j.matlet.2012.05.069

Google Scholar

[19] J. Rusing, S. Herzig, Concentration and temperature dependence of titanium self-diffusion and interdiffusion in the intermetallic phase Ti3Al, Intermetallics. 4 (1996) 647-657.

DOI: 10.1016/0966-9795(96)00060-x

Google Scholar

[20] J.X. Zou, Z.M. Liu, A.M. Wu, Y. Qin, X.G. Wang, C. Dong, Calculation and experimental determination of enhanced diffusion effect under irradiation of pulsed electron beam, Trans. Mater. Heat Treat. 24 (2003) 70-74.

Google Scholar