Natural Rubber Based Compatibilizer Prepared in Twin Screw Extruder: Optimization Percentage of Grafted Maleic Anhydride Using Experimental Design

Abstract:

Article Preview

Maleic anhydride grafted natural rubber compatibilizer was prepared in molten state using twin screw extruder. Amount of maleic anhydride and initiator, as well as screw rotation were varied according to Box-Behnken experimental design. Titration of acid group from the anhydride function and FTIR spectra analysis were carried out as quantitative and qualitative analysis of grafted MA, respectively. The results showed that the percentages of grafted MA for all samples were ranged from 1.31 to 5.36%. The optimum conditions are predicted at 14.4 phr of MA level, 0.41 phr of BPO level, and 71 rpm screw rotation giving 5.39 ± 0.16% of grafted MA. FTIR spectra showed that the MA and carbonyl functional group were found in the compatibilizer suggested the presence of grafted MA and ring opening reaction.

Info:

Periodical:

Edited by:

Tjokorda Gde Tirta Nindhia, Hendra Suherman, Brian Yuliarto

Pages:

13-17

DOI:

10.4028/www.scientific.net/MSF.864.13

Citation:

O. Ujianto et al., "Natural Rubber Based Compatibilizer Prepared in Twin Screw Extruder: Optimization Percentage of Grafted Maleic Anhydride Using Experimental Design", Materials Science Forum, Vol. 864, pp. 13-17, 2016

Online since:

August 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] X.V. Cao, H. Ismail, A.A. Rashid, T. Takeichi, and T. Vo-Huu, Polymer-Plastics Technology and Engineering, Vol. 51 (2012), pp.904-910.

[2] Z. -x. Dong, M. -x. Liu, D. -m. Jia, and Y. -h. Zhou, Chinese Journal of Polymer Science, Vol. 31 (2013), pp.1127-1138.

[3] R.N. Hakim and H. Ismail, Polymer-Plastics Technology and Engineering, Vol. 48 (2009), pp.910-918.

[4] S.F. Halim, A.I. Abou-Kandil, A. Awad, and N. Darwish, Journal of Adhesion Science and Technology, Vol. 23 (2009), pp.71-83.

[5] C. Nakason and S. Saiwari, Journal of Applied Polymer Science, Vol. 110 (2008), pp.4071-4078.

[6] H. Afifi and A.A. El-Wakil, Polymer-Plastics Technology and Engineering, Vol. 47 (2008), pp.1032-1039.

[7] H. Ismail, A. Rusli, and A.A. Rashid, Polymer Testing, Vol. 24 (2005), pp.856-862.

[8] C. Nakason, A. Kaesaman, Z. Samoh, S. Homsin, and S. Kiatkamjornwong, Polymer Testing, Vol. 21 (2002), pp.449-455.

DOI: 10.1016/s0142-9418(01)00109-x

[9] Z. Zeng, W. Ren, C. Xu, W. Lu, Y. Zhang, and Y. Zhang, Journal of Polymer Research, Vol. 17 (2009), pp.213-219.

[10] C. Nakason, A. Kaesman, S. Homsin, and S. Kiatkamjornwong, Journal of Applied Polymer Science, Vol. 81 (2001), pp.2803-2813.

DOI: 10.1002/app.1728

[11] C. Nakason, A. Kaesaman, and P. Supasanthitikul, Polymer Testing, Vol. 23 (2004), pp.35-41.

DOI: 10.1016/s0142-9418(03)00059-x

[12] J. Saelao and P. Phinyocheep, Journal of Applied Polymer Science, Vol. 95 (2005), pp.28-38.

[13] P. Wongthong, C. Nakason, Q. Pan, G.L. Rempel, and S. Kiatkamjornwong, European Polymer Journal, Vol. 49 (2013), pp.4035-4046.

DOI: 10.1016/j.eurpolymj.2013.09.009

[14] V. Vijayalekshmi, K.E. George, and C. Pavithran, Progress in Rubber, Plastics and Recycling Technology, Vol. 26 (2010), pp.183-197.

[15] J. Musil and M. Zatloukal, Chemical Engineering Science, Vol. 66 (2011), pp.4814-4823.

[16] H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho, and D.R. Paul, Polymer, Vol. 42 (2001), pp.9513-9522.

[17] S.H.P. Bettini and J.A.M. Agnelli, Journal of Applied Polymer Science, Vol. 85 (2002), pp.2706-2717.

[18] K. Cao, Z. -c. Shen, Z. Yao, B. -w. Qu, X. -b. Pang, Z. -q. Lu, Y. Li, and Z. -h. Chen, Chemical Engineering Science, Vol. 65 (2010), pp.1621-1626.

[19] B.M. Dorscht and C. Tzoganakis, Journal of Applied Polymer Science, Vol. 87 (2003), pp.1116-1122.

[20] Z.A. Malik, M.H. Malik, T. Hussain, and F.A. Arain, Journal of Engineered Fibers and Fabrics, Vol. 6 (2011), pp.46-53.

In order to see related information, you need to Login.