Differential Scanning Calorimetry Tests of Epoxy and Polyester Composites Reinforced with Giant Bamboo Fibers

Article Preview

Abstract:

Despite the benefits associated with the use of natural fibers instead of synthetic ones as composite reinforcement, there are still some limitations to their application. Among the disadvantages associated with natural fibers stands the low thermal resistance. This imposes restrictions to the composite utilization when it is exposed to temperatures above 100 oC. For one point, the hydrophilic nature of lignocellulosic fibers causes absorption of water, but at high temperatures this water is lost, what produce pores and flaws in the composite polymer matrix. Moreover, the fiber cellulose, hemicellulose and lignin are degraded at higher temperatures. The objective of the present work was to conduct a comparative differential scanning calorimetric investigation between polyester and epoxy matrixes composites incorporated with different volume fractions of giant bamboo fibers. A substantial loss of mass was found up to 120 oC. The DSC curves revealed a variation in the enthalpy as a function of the giant bamboo fiber fractions and the corresponding polymeric matrix.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Kalia, B.S.; Kaith and I. Kaurs: Cellulose Fibers: Bio and Nano-Polymer Composites. (Springer, New York, USA, 2011).

Google Scholar

[2] J. Summerscales, N. Dissanayake, A.S. Virk and W. Hall: Composites. Compos. Part A Vol. 41 (2010), p.1329 and 1336.

Google Scholar

[3] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A.B. Bevitori, I.L. Silva and L. L Costa: Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[4] E. Zini and M. Scendola: Polym. Compos. Vol. 32 (2011), p. (1905).

Google Scholar

[5] H. Ku, H. Wang, N. Pattarachayakoop and M. Trada: Campos. Part B Vol. 42 (2011), p.856.

Google Scholar

[6] O. Faruk, A.K. Bledzki, H.P. Fink and M. Sain: Progr. Polym. Sci. Vol. 37 (2012), p.1552.

Google Scholar

[7] D.U. Shah: J. Mater. Sci. Vol. 48 (2013), p.6083.

Google Scholar

[8] V.K. Thakur, M.K. Thakur and R.K. Gupta: Intern. J. Polym. Anal. Charact. Vol. 19 (2014), p.256.

Google Scholar

[9] O. Faruk, A.K. Bledzki, H. -P. Fink and M. Sain: Macromol. Mater. Eng. Vol. 299 (2014), p.9.

Google Scholar

[10] T. Corbiere-Nicollier, L.B. Gfeller, L. Lundquist, Y. Leterrier, J.A.E. Manson and O. Jolliet: Resource, Conservation and Recycling Vol. 33 (2001), p.267.

DOI: 10.1016/s0921-3449(01)00089-1

Google Scholar

[11] P. Wambua, I. Ivens and I. Verpoest: Compos. Sci. Technol. Vol. 63 (2003), p.1259.

Google Scholar

[12] S.V. Joshi, L.T. Drzal, A.K. Mohanty and S. Arora: Comp. Part A Vol. 35(2004), p.371.

Google Scholar

[13] G. Marsh: Mater. Today Vol. 6 (2003), p.36.

Google Scholar

[14] J. Holbery and D. Houston: JOM Vol. 58 (2006), p.80.

Google Scholar

[15] R. Zah, R. Hischier, A.L. Ledo and I. Brown: J. Cleaner Production Vol. 15 (2007), p.1032.

Google Scholar

[16] N. Thomas, S.A. Paul, L.A. Pothan and B. Deepa. Natural fibers: structure, properties and applications. In: Kalia, S.; Kaith, B. S.; Kaur, I. (Eds. ). Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer - Verlag: Berlin - Heidelberg, Germany, 2011; pp.3-42.

DOI: 10.1007/978-3-642-17370-7_1

Google Scholar

[17] K. Pickering: Properties and Performance of Natural-Fibre Composites. (CRC Press LLC, Boca Raton, USA, 2008).

Google Scholar

[18] U. Riedel: Polym. Sci. Comprehensive Reference Vol. 10 (2012), p.295.

Google Scholar

[19] D. Shah, P.J. Schubel and M.J. Clifford: Compos Part B Vol. 52 (2013), p.172.

Google Scholar

[20] F.G. Shin, X.J. Xian, W.P. Zhena and M.W. Yipp: J. Mater. Sci. Vol. 24 (1989), p.3483.

Google Scholar

[21] S. Jain, R. Kumar and U. C. Jindal: J. Mater. Sci. Vol. 27 (1992), p.4598.

Google Scholar

[22] S. Jain, R. Kumar and U.C. Jindal: J. Mater. Sci. Letters Vol. 12 (1993), p.558.

Google Scholar

[23] J. Seema and R. Kumar: Mater. Manufact. & Proc. Vol. 9 (1994), p.813.

Google Scholar

[24] X. Chen, Q. Guo and Y. Mi: J. Appl. Polym. Sci. Vol. 69 (1998), p.1891.

Google Scholar

[25] K. Okubo, T. Fujii and Y. Yamamoto: Compos. Part A Vol. 35 (2004), p.377.

Google Scholar

[26] K. Okubo, T. Fujii and N. Yamashita: JSME Int. Vol. 48 (2005), p.199.

Google Scholar

[27] S.H. Lee and W. Siqun: Compos. Part A Vol. 37 (2006), p.80.

Google Scholar

[28] S. Shibata, C. Yong and I. Fukumoto: Compos. Part A (2008), p.640.

Google Scholar

[29] X. Huang and A. Netravali: Compos. Sci. Technol. Vol. 69 (2009), p.1009.

Google Scholar

[30] L. L. Costa, S.N. Monteiro and R. L. Loiola Annual Meeting & Exhibition Conference: Characterization of Minerals, Metals, and Materials (TMS). Seattle 14 to 18 February 2010. Proceeding… Seattle 2010. Washington (USA).

Google Scholar

[31] L. B. S. Martins, S.N. Monteiro, F. M. Margem, R. L. Loiola, A.C. Pereira and J. I. Margem. Weibull analysis of the elastic modulus of bamboo fibers of the species Dendrocalamus giganteus. In: Characterization of Minerals, Metals & Materials 2013, Hoboken NJ USA: pub. John Wiley & Sons; 2013. pp.441-448.

DOI: 10.1002/9781118659045.ch51

Google Scholar

[32] S.N. Monteiro, F.M. Margem, L.B.S. Martins, R.L. Loiola and M.P. Oliveira: Mater. Sci. Forum Vols. 775-776 (2014), p.302.

Google Scholar

[33] S.N. Monteiro, F.M. Margem, L.B.S. Martins, R.L. Loiola and M.P. Oliveira: Mater. Sci. Forum Vols. 775-776 (2014), p.308.

Google Scholar

[34] L. B. S. Martins, F. M. Margem, S.N. Monteiro, R. L. Loiola and J. I. Margem. 1zod impact test of polyester composites reinforced with bamboo fibers of the species Dendrocalamus giganteus. In: Characterization of Minerals, Metals & Materials 2014, Hoboken NJ USA: pub. John Wiley & Sons; 2013. pp.581-587.

DOI: 10.1002/9781118888056.ch68

Google Scholar

[35] B. Sikdar, R.K. Basak and B.C. Mitra: J. Appl. Polym. Sci. Vol. 55 (1995), p.1673.

Google Scholar