The Effect of Phase Transformation on the Tensile Fracture of Austenitic Stainless Steel

Article Preview

Abstract:

The tensile fracture of two austenitic stainless steels with different degrees of stability for low temperature strain induced martensitic transformation was investigated. A stable AISI type 310 stainless steel displayed typical tensile stress-strain curves with decreasing work hardening rate at temperatures in the interval of 25 to-196°C, in which no martensitic transformation occurred. By contrast, a metastable type 302 stainless steel with martensitic transformation from 25 to-196°C showed a range of plastic deformation with increasing work hardening rate. The fracture of the stable 310 steel presented the characteristic cup and cone ductile aspect with micro dimples and sparse evidence of intergranular cracks. On the contrary, the martensitic transformation in the metastable 302 steel causes a neckless fracture with generally brittle appearance, despite the relatively high strain attained at fracture. At-80 and-196°C, associated with higher amount of transformed martensite, the fracture surface was covered with micro-craters formed around inclusions enveloped by thin strain induced martensite lamellae.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

508-513

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.F. Zackay, E.R. Parker, D. Fahr and R. Bush: Trans ASM Vol. 60(1967), p.252.

Google Scholar

[2] W.W. Gerberich, P.L. Hemmings and V.F. Zackay, Fracture of TRIP steel. P.L. Pratt. Ed. London, Chapman and Hall, (1969).

Google Scholar

[3] W.W. Gerberich, P.L. Hemmings and V.F. Zackay: Metall. Trans. Vol. 2 (1971), p.2243.

Google Scholar

[4] G.R. Chanani, V.F. Zackay and E.R. Parker: Metall. Trans. Vol. 2 (1971), p.133.

Google Scholar

[5] D. Bhabdakar, V.F. Zackay and E.R. Parker: Metall. Trans. Vol. 2 (1972), p.2619.

Google Scholar

[6] D. Fahr: Metall. Trans. Vol. 2 (1972), p.1883.

Google Scholar

[7] J.P. Bressanelli and A. Moskowitz: Trans. ASM Vol. 59 (1966), p.223.

Google Scholar

[8] A. Rosen, R. Jago, and T. Kjer: J. Mater. Sci. Vol. 7 (1972), p.870.

Google Scholar

[9] C. Bathias and R.M. Pelloux: Metall. Trans. Vol. 4 (1973), p.1265.

Google Scholar

[10] A.G. Pineau, R.M. Pelloux: Metall Mater Trans B Vol. 5 (1974), p.1103.

Google Scholar

[11] P. Maxwell: Metallography Vol. 9 (1976), p.9.

Google Scholar

[12] H. Fonseca and S.N. Monteiro, Fracture modes of 302 stainless steel under metastable conditions. In: Proceedings of the 2nd International Conference on Mechanical Behavior of Materials, Boston, USA, 1976. pp.1-10.

Google Scholar

[13] L.C.M. Gilapa, L.C. Oliveira, C.A.S. Oliveira and M.R. Silva: Mater. Sci. Eng A Vol. 622 (2014), p.212.

Google Scholar

[14] S. Papula, J. Talonen, O. Todoshenko and H. Hanninen: Met. Mat. Trans. A Vol. 45 (2014), p.5270.

Google Scholar

[15] R. Ortwein, B. Skoczen and J.P. Tock: Intern. J. Plasticity Vol. 59 (2014), p.152.

Google Scholar

[16] S. Papula, J. Talonen and H. Hanninen: Met. Mat. Trans. A Vol. 45 (2014), p.1238.

Google Scholar

[17] N. Li, Y.D. Wang, W.J. Liu, Z.N. An, J.P. Liu, R. Su, J. Li and P.K. Liaw: Acta Materialia Vol. 64 (2014), p.12.

Google Scholar

[18] S. Wolf, S. Martin, L. Kruger and U. Martin: Mater. Sci. Eng. A Vol. 594 (2014), p.72.

Google Scholar

[19] X.F. Li, J. Chen, L.Y. Ye, W. Ding and P.C. Song: Acta Metall. Sinica – English Letters Vol. 26 (2013), p.657.

Google Scholar

[20] R.D.K. Misra, J.S. Shah, S. Mali, P.K.C.V. Surya, M.C. Somani and L.P. Karjalainen: Mater. Sci. Technol. Vol. 29 (2013), p.1185.

Google Scholar

[21] T. Michler, I.E. Boitsov, I.L. Malkov, A.A. Yukhimchuk and J. Naumann: Corros. Sci. Vol. 65 (2012), p.169.

Google Scholar

[22] F. Hahnenberger, M. Smaga and D. Eifler: Adv. Eng. Mater. Vol. 14 (2012), p.853.

Google Scholar

[23] M. Sitko and B. Skoczen: Intern. J. Solids Struct. Vol. 49 (2012), p.613.

Google Scholar

[24] A. Weidner, A. Glage, S. Martin, J. Man, V. Klemm, U. Martin, J. Polak, D. Rafaja and H. Biermann: Intern. J. Mater Research Vol. 102 (2011), p.1374.

DOI: 10.3139/146.110604

Google Scholar

[25] B. Hwang, T.H. Lee, S.J. Park, C.S. Oh and S.J. Kim: Mater. Sci. Eng. B Vol. 52 (2011), p.7257.

Google Scholar

[26] N. Tsuchida, Y. Murimoto, T. Tonan, Y. Shibata, K. Fukaura and R. Ueji: ISIJ Intern. Vol. 51 (2011), p.124.

Google Scholar

[27] M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials. (Cambridge University Press 2nd Ed., New York, 2009).

Google Scholar