[1]
V.F. Zackay, E.R. Parker, D. Fahr and R. Bush: Trans ASM Vol. 60(1967), p.252.
Google Scholar
[2]
W.W. Gerberich, P.L. Hemmings and V.F. Zackay, Fracture of TRIP steel. P.L. Pratt. Ed. London, Chapman and Hall, (1969).
Google Scholar
[3]
W.W. Gerberich, P.L. Hemmings and V.F. Zackay: Metall. Trans. Vol. 2 (1971), p.2243.
Google Scholar
[4]
G.R. Chanani, V.F. Zackay and E.R. Parker: Metall. Trans. Vol. 2 (1971), p.133.
Google Scholar
[5]
D. Bhabdakar, V.F. Zackay and E.R. Parker: Metall. Trans. Vol. 2 (1972), p.2619.
Google Scholar
[6]
D. Fahr: Metall. Trans. Vol. 2 (1972), p.1883.
Google Scholar
[7]
J.P. Bressanelli and A. Moskowitz: Trans. ASM Vol. 59 (1966), p.223.
Google Scholar
[8]
A. Rosen, R. Jago, and T. Kjer: J. Mater. Sci. Vol. 7 (1972), p.870.
Google Scholar
[9]
C. Bathias and R.M. Pelloux: Metall. Trans. Vol. 4 (1973), p.1265.
Google Scholar
[10]
A.G. Pineau, R.M. Pelloux: Metall Mater Trans B Vol. 5 (1974), p.1103.
Google Scholar
[11]
P. Maxwell: Metallography Vol. 9 (1976), p.9.
Google Scholar
[12]
H. Fonseca and S.N. Monteiro, Fracture modes of 302 stainless steel under metastable conditions. In: Proceedings of the 2nd International Conference on Mechanical Behavior of Materials, Boston, USA, 1976. pp.1-10.
Google Scholar
[13]
L.C.M. Gilapa, L.C. Oliveira, C.A.S. Oliveira and M.R. Silva: Mater. Sci. Eng A Vol. 622 (2014), p.212.
Google Scholar
[14]
S. Papula, J. Talonen, O. Todoshenko and H. Hanninen: Met. Mat. Trans. A Vol. 45 (2014), p.5270.
Google Scholar
[15]
R. Ortwein, B. Skoczen and J.P. Tock: Intern. J. Plasticity Vol. 59 (2014), p.152.
Google Scholar
[16]
S. Papula, J. Talonen and H. Hanninen: Met. Mat. Trans. A Vol. 45 (2014), p.1238.
Google Scholar
[17]
N. Li, Y.D. Wang, W.J. Liu, Z.N. An, J.P. Liu, R. Su, J. Li and P.K. Liaw: Acta Materialia Vol. 64 (2014), p.12.
Google Scholar
[18]
S. Wolf, S. Martin, L. Kruger and U. Martin: Mater. Sci. Eng. A Vol. 594 (2014), p.72.
Google Scholar
[19]
X.F. Li, J. Chen, L.Y. Ye, W. Ding and P.C. Song: Acta Metall. Sinica – English Letters Vol. 26 (2013), p.657.
Google Scholar
[20]
R.D.K. Misra, J.S. Shah, S. Mali, P.K.C.V. Surya, M.C. Somani and L.P. Karjalainen: Mater. Sci. Technol. Vol. 29 (2013), p.1185.
Google Scholar
[21]
T. Michler, I.E. Boitsov, I.L. Malkov, A.A. Yukhimchuk and J. Naumann: Corros. Sci. Vol. 65 (2012), p.169.
Google Scholar
[22]
F. Hahnenberger, M. Smaga and D. Eifler: Adv. Eng. Mater. Vol. 14 (2012), p.853.
Google Scholar
[23]
M. Sitko and B. Skoczen: Intern. J. Solids Struct. Vol. 49 (2012), p.613.
Google Scholar
[24]
A. Weidner, A. Glage, S. Martin, J. Man, V. Klemm, U. Martin, J. Polak, D. Rafaja and H. Biermann: Intern. J. Mater Research Vol. 102 (2011), p.1374.
DOI: 10.3139/146.110604
Google Scholar
[25]
B. Hwang, T.H. Lee, S.J. Park, C.S. Oh and S.J. Kim: Mater. Sci. Eng. B Vol. 52 (2011), p.7257.
Google Scholar
[26]
N. Tsuchida, Y. Murimoto, T. Tonan, Y. Shibata, K. Fukaura and R. Ueji: ISIJ Intern. Vol. 51 (2011), p.124.
Google Scholar
[27]
M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials. (Cambridge University Press 2nd Ed., New York, 2009).
Google Scholar