Сolour Design of Intumescences Сoatings for Building Constructions

Article Preview

Abstract:

For the rational decision of colors on the different building objects it is recommended to use optimal colors to create the best climate at industrial enterprises. For this purpose the appropriate building codes are developed. Building constructions in the industrial enterprises, which are applied fire-retardant paint, also painted in the appropriate color with tinting paste, or applying the finishing coat with that color. It is shown, that the introduction of tinting paste in the fire-retardant paint as overcoating of the fire-retardant paint leads to chaotic effect on height of foam of the intumescing coatings. The conclusions about invalidity of coloring with the fire-retardant paints in saturated tones used tinting paste without preliminary testing on the fire retardant efficiency are made. Similar conclusions are applied to the paint systems for an intumescing fire protective coatings using surface finishing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-153

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu. Nikitin, V. Murgul, N. Vatin, V, Pukhkal. Uses of glass in architecture: heat losses of buildings based on translucent structures, Applied Mechanics and Materials. 680 (2014) 481-485.

DOI: 10.4028/www.scientific.net/amm.680.481

Google Scholar

[2] D. Nemova, V. Murgul, A. Golik, E. Chizhov, V. Pukhkal, N. Vatin. Reconstruction of administrative buildings of the 70s: the possibility of energy modernization, Journal of Applied Engineering Science. 12 (2014) 37-44.

DOI: 10.5937/jaes12-5610

Google Scholar

[3] V. Golovanov, V. Pavlov, A. Pekhotikov. Obespechenie ognestojkosti nesushchih stroitel'nyh konstrukcij [Fire resistance of supporting structures], Pozharnaya bezopasnost [Fire Safety]. 3 (2002) 48-58.

Google Scholar

[4] V. Strakhov, A. Garashchenko, G. Kuznetsov, V. Rudzinskii. Matematicheskoe modelirovanie teplofizicheskih i termohimicheskih processov pri gorenii vspuchivayushchihsya ognezashchitnyh pokrytij [Mathematical modeling of thermal and thermo-chemical processes in combustion intumescent fire protective coatings], [Fizika goreniya i vzryva] Combustion, explosion, and shock waves. 2 (2001).

DOI: 10.1023/a:1017557726294

Google Scholar

[5] M. Lazarevska, M. Cvetkovska, M. Knezevic, A. Trombeva Gavriloska, M. Milanovic, V. Murgul, N. Vatin. Neural Network Prognostic Model for Predicting the Fire Resistance of Eccentrically Loaded RC Columns, Applied Mechanics and Materials. 627 (2014).

DOI: 10.4028/www.scientific.net/amm.627.276

Google Scholar

[6] M. Salminen, M. Heinisuo. Numerical analysis of thin steel plates loaded in shear at non-uniform elevated temperatures, Journal of Constructional Steel Research. 97 (2014) 105-113.

DOI: 10.1016/j.jcsr.2014.02.002

Google Scholar

[7] National Standart 181-70. Ukazaniya po proektirovaniyu cvetovoj otdelki inter'erov proizvodstvennyh zdanij promyshlennyh predpriyatij [Design information color interior decoration industrial buildings industrial].

Google Scholar

[8] National Standart 15548-70. Cveta signal'nye i znaki bezopasnosti dlya promyshlennyh predpriyatij [Colors signaling and safety signs for the industrial enterprises].

Google Scholar

[9] National Standart 14202-69. Truboprovody promyshlennyh predpriyatij. Opoznavatel'naya okraska, preduprezhdayushchie znaki i markirovochnye shchitki [Pipelines industry. Identification color of the warning signs and marking plates].

Google Scholar

[10] S. Christkea, A. Gibsona, K. Grigorioub, A. Mouritzb. Multi-layer polymer metal laminates for the fire protection of lightweight structures, Materials & Design. 97 (2016) 349-356.

DOI: 10.1016/j.matdes.2016.02.105

Google Scholar

[11] O. Lamkin, M. Gravit, O. Nedryshkin. Experimental and theoretical research fire danger facade system «Technocom», Construction of Unique Buildings and Structures. 11(38) (2015) 42-58.

Google Scholar

[12] N. Bezgin. An experimental evaluation to determine the required thickness of passive fire protection layer for high strength concrete tunnel segments, Construction and Building Materials. 97 (2015) 279–286.

DOI: 10.1016/j.conbuildmat.2015.07.130

Google Scholar

[13] M. Gravit. Rasprostranenie rezul'tatov ispytanij na ognestojkost' svetoprozrachnyh ograzhdayushchih nenesushchih konstrukcij [Distribution of test results for fire resistance of translucent curtain walling designs], Pozharovzryvobezopasnost' [Fire and Explosion Safety]. 11 (2014).

Google Scholar

[14] ETAG 018. ETAG 018. Guideline for European technical approval of fire protective products. Part 2: Reactive coatings for fire protection of steel elements.

Google Scholar

[15] DD ENV 13381-4: 2002 Test methods for determining the contribution to the fire resistance of structural members. Applied protection to steel members.

DOI: 10.3403/02616125u

Google Scholar

[16] DIN EN 13381-8 Test methods for determining the contribution to the fire resistance of structural members - Part 8: Applied reactive protection to steel members.

DOI: 10.3403/30256862

Google Scholar

[17] W. Wang, G. Li. Fire-resistance study of restrained steel columns with partial damage to fire protection, Fire Safety Journal. 44 (2009) 1088–1094.

DOI: 10.1016/j.firesaf.2009.08.002

Google Scholar

[18] M. Heinisuo, M. Laasonen, J. Outinen, J. Hietaniemi. Systematisation of design fire loads in an integrated fire design system, Application of Structural Fire Design. 1 (2011) 405-410.

Google Scholar

[19] M. Gravit, V. Gumenyuk, O. Nedryshkin. Fire Resistance Parameters for Glazed Non-Load-Bearing Curtain Walling Structures. Extended Application, Procedia Engineering. 117 (2015) 114 – 118.

DOI: 10.1016/j.proeng.2015.08.131

Google Scholar

[20] A. Krivtcov, V. Kazakova, I. Mingalimov, P. Bogdanov, I. Nitsa. Calculation of the most effective section of a steel column from the point of view of fire protection, Construction of Unique Buildings and Structures. 6 (33) (2015) 34-46.

Google Scholar

[21] N. Vatin, A. Gorshkov, D. Nemova, A. Staritcyna, D. Tarasova. The energy-efficient heat insulation thickness for systems of hinged ventilated facades, Advanced Materials Research. 1 (2014) 941 – 944, 905-920.

DOI: 10.4028/www.scientific.net/amr.941-944.905

Google Scholar

[22] Federal Law number 123. Tekhnicheskij reglament o trebovaniyah pozharnoj bezopasnosti [Technical Regulations on Fire Safety Requirements].

Google Scholar

[23] R. Kostić, N. Vatin, V. Murgul. Fire Safeguards of Plastbau, Construction, Applied Mechanics and Materials. 725-726 (2015) 138-145.

DOI: 10.4028/www.scientific.net/amm.725-726.138

Google Scholar

[24] P. Kraus, M. Mensinger, F. Tabeling, P. Schaumann. Experimental and Numerical Investigations of Steel Profiles with Intumescent Coating Adjacent to Space-Enclosing Elements in Fire, Journal of Structural Fire Engineering. 6 (2015) 237-246.

DOI: 10.1260/2040-2317.6.4.237

Google Scholar

[25] K. Bzdawka, M. Heinisuo. Fin plate joint using component method of EN 1993-1-8, Rakenteiden Mekaniikka (Journal of Structural Mechanics). 43 (2010) 25-43.

Google Scholar

[26] M. Sarraj, I. Burgess, J. Davison, R. Plank. Finite element modeling of steel fin plate connections in fire, Fire Safety Journal. 42 (2007) 408-415.

DOI: 10.1016/j.firesaf.2007.01.007

Google Scholar

[27] H. Perttola, M. Heinisuo. 3D Component method for base bolt joint, Steel Structures: Culture & Sustainability 2010,. 2010, Istanbul.

Google Scholar

[28] A. Korotkov. Melamine/monoammonium phosphate complex as the polyphosphate substitute in flame retardant coatings, Journal of Fire Sciences. 34 (2016) 89-103.

DOI: 10.1177/0734904115621583

Google Scholar

[29] B. Kandola, M. Akonda, A. Horrocks. Fibre-reinforced glass/silicate composites: effect of fibrous reinforcement on intumescence behaviour of silicate matrices as a fire barrier application, Original Research Article Materials & Design. 86 (2015).

DOI: 10.1016/j.matdes.2015.07.103

Google Scholar

[30] W. Zhang, X. He, T. Song, Q. Jiao, R. Yang. Comparison of intumescence mechanism and blowing-out effect in flame-retarded epoxy resins, Original Research Article Polymer Degradation and Stability. 112 (2015) 43-51.

DOI: 10.1016/j.polymdegradstab.2014.11.017

Google Scholar

[31] O. Blaževica-Juhnevica, D. Serdjuks, R. Ozolins, V. Goremikins, L. Pakrastins. Choice of Rational Parameters of Combined Structure Original Research Article, Procedia Engineering. 117 (2015) 85-93.

DOI: 10.1016/j.proeng.2015.08.128

Google Scholar