Effect of Anodizing Voltage on Anodic Titanium Dioxide (ATO) Growth Based on an Ethylene Glycol Solution Containing NH4F

Article Preview

Abstract:

We reported on the influence of applied voltage on the surface morphology of anodic titanium dioxide (ATO) thin films. At first, titanium (Ti) thin films were prepared by DC-magnetron sputtering for use as a base material in the anodization process. The titanium dioxide (TiO2) nanoporous ATO was fabricated by the anodization process from the Ti thin film, with different applied voltages from 20 V to 60 V in an electrolyte based on an ethylene glycol containing NH4F. Pore size distribution of ATO thin films can be varied from 20-50 nm by increasing the applied voltage, while the thickness of the film also increases. In addition, to observe the effect of time, the optimal condition of anodizing voltage was studied by increasing the anodizing time. The results clearly showed the nanoporous ATO over the films and the thickness of the nanoporous ATO is approximately 260 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-151

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Khameneh Asl, B. Alavi, S. Ahmadi, Surf. Interface Anal. Vol. 44 (2012), p.1051.

Google Scholar

[2] H. Park, W.R. Kim, H.T. Jeong, J.J. Lee, H.G. Kim, W.Y. Choi, Sol. Energy Mater. Sol. C Vol. 95 (2011), p.184.

Google Scholar

[3] W.H. Ryu, D.H. Nam, Y.S. Ko, R.H. Kim, H.S. Kwon, Electrochim. Acta Vol. 61 (2012), p.19.

Google Scholar

[4] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, C. A. Grimes, Sensors and Actuators Vol. 93 (2003), p.338.

Google Scholar

[5] G. K. Mor, O. K. Varghese, M. Paulose, K. Shanka, C. A. Grimes, Solar Energy Materials & Solar Cells Vol. 90 (2006), p. (2011).

Google Scholar

[6] H.Y. Si, Z.H. Sun, X. Kang, W.W. Zi, H.L. Zhang, Microporous and Mesoporous Materials Vol. 119 (2009), p.75.

Google Scholar

[7] C.S. Chi, J. Choi, Y. Jeong, O.Y. Lee, H.J. Oh, Thin Solid Films Vol. 519 (2011), p.4676.

Google Scholar

[8] W. Simka, A. Sadkowski, M. Warczak, A. Iwaniak, G. Dercz, J. Michalska, A. Maciej, Electrochim. Acta Vol. 56 (2011), p.8962.

DOI: 10.1016/j.electacta.2011.07.129

Google Scholar

[9] Y. Xie, Y. Jin, Y. Zhou, Y. Wang, Applied Surface Science Vol. 313 (2014) p.549–557.

Google Scholar

[10] G.D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, M. Jaskuła, Electrochim. Acta Vol. 55 (2010), p.4359.

DOI: 10.1016/j.electacta.2009.12.053

Google Scholar

[11] G.D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, M. Jaskuła, Electrochim. Acta Vol. 104 (2013), p.526.

DOI: 10.1016/j.electacta.2012.12.121

Google Scholar

[12] S. Sreekantan, Z. Lockman, R. Hazan, M. Tasbihi, L.K. Tong, A.R. Mohamed, J. Alloy. Comp. Vol. 485 (2009), p.478.

Google Scholar

[13] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Journal of Materials Research Vol. 16 (2001), pp.3331-3334.

Google Scholar

[14] Macak JM, Tsuchiya H, Taveira L, et al. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Vol. 44 (2005), pp.7463-7465.

DOI: 10.1002/anie.200502781

Google Scholar

[15] K. Shanka, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, C. A. Grimes, Nanotechnology Vol. 18 (2007), Number 6.

Google Scholar