TiO2 Powder Synthesized via the Solvothermal Method and Enhanced Photocatalytic Degradation of Methomyl

Article Preview

Abstract:

TiO2 powder was synthesized via the solvothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Single phase anatase was obtained without calcination steps. The particle was irregular in shape with average particle size of 1.0 μm. The characteristic X–ray radiation of element was show titanium at 4.510 keV and 4.931 keV and oxygen at 0.523 keV. The photocatalytic degradation of methomyl in aqueous solution over TiO2 powder under UV irradiation was determined by UV-Vis spectroscopy. The influence of the amount of TiO2 powder for photocatalytic degradation of methomyl and rate constant were determined. The optimum condition for photocatalytic degradation of methomyl over TiO2 powder was obtained at 0.05 g.L-1 for the amount of TiO2 powder in 60 min. The degradation rate constant at the optimum condition was 0.0243 min-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-195

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. –F. Chang, C. –Y. Chang, K. –E. Hsu, S. –C. Lee and W. Holl: J. Hazard. Mater. Vol. 155 (2008), p.295.

Google Scholar

[2] B.N. Grgur and D.Ž. Mijin: Appl. Catal. B–Environ. Vol. 147 (2014), p.429.

Google Scholar

[3] X. Wu, X. Sun, C. Zhang, C. Gong and J. Hu: Chemosphere Vol. 107 (2014), p.331.

Google Scholar

[4] M.S. El–Geundi, M.M. Nassar, T.E. Farrag and M.H. Ahmed: Procedia Environ. Sci. Vol. 17 (2013), p.630.

Google Scholar

[5] G. –P. Yang, Y. –H. Zhao, X. –L. Lu and X. –C. Gao: Colloid. Surface. A Vol. 264 (2005), p.179.

Google Scholar

[6] X. J. –Liang, W. Jun, W. Z. –Chun, W. Kun, L. M. –Ying, J.J. –Dong, H. Jian and L.S. –Peng: Pedosphere Vol. 19(2) (2009), p.238.

Google Scholar

[7] M. Tamimi, S. Qourzal, N. Barka, A. Assabbane and Y. Ait–Ichou: Sep. Purif. Technol. Vol. 61(1) (2008), p.103.

Google Scholar

[8] R. –S. Juang and C. –H. Chen: J. Taiwan Inst. Chem. E Vol. 45 (2014), p.989.

Google Scholar

[9] C. –H. Chiou, C. –Y. Wu and R. –S. Juang: Sep. Purif. Technol. Vol. 62 (2008), p.559.

Google Scholar

[10] M.S. El–Geundi, M.M. Nassar, T.E. Farrag and M.H. Ahmed: Alexandria Eng. J. Vol. 51 (2012), p.11.

Google Scholar

[11] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 21–1272, Swarthmore, PA.

Google Scholar

[12] P. Pookmanee, I. Phiwchai, S. Yorita, R. Puntharod, S. Sangsrichan, J. Kitikul and S. Phanichphant: Mater. Sci. Forum Vol. 804 (2013), p.209.

DOI: 10.4028/www.scientific.net/msf.804.209

Google Scholar

[13] S. –I. Kitazawa, Y. Choi, S. Yamamoto and T. Yamaki: Thin Solid Films Vol. 515 (2006), p. (1901).

Google Scholar

[14] L. Zhu, K. Liu, H. Li, Y. Sun and M. Qiu: Solid State Sci. Vol. 20 (2013), p.8.

Google Scholar

[15] D.S. Kim and S. –Y. Kwak: Appl. Catal. A–Gen. Vol. 323 (2007), p.110.

Google Scholar

[16] F. He, J. Li, T. Li and G. Li: Chem. Eng. J. Vol. 237 (2014), p.312.

Google Scholar

[17] R. Woldseth: X–ray Energy Spectrometry (Kevex Corp, USA 1973).

Google Scholar

[18] F. Sayilkan, M. Asiltürk, S. Erdemoğlu, M. Akarsu, H. Sayilkan, M. Erdemoğlu and E. Arpaç: Mater. Lett. Vol. 60 (2006), p.230.

DOI: 10.1016/j.matlet.2005.08.023

Google Scholar

[19] M. Tamimi, S. Qourzal, A. Assabbane, J. –M. Chovelon, C. Ferronato and Y.A. –Ichoua: Photoch. Photobio. Sci. Vol. 5 (2006), p.477.

Google Scholar