Quantitative Measurement of Strain Field around η′ Phase in a 7000 Series Aluminum Alloy

Article Preview

Abstract:

The strain field of η′ phase in an aged 7000 series aluminum alloy has been investigated using a combination of high resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA) technique in this paper, and strain components εxx, εyy were mapped, respectively. The results showed that the strain is mainly generated near the matrix/η′ phase interface and gradually decreases with distance increasing away from the interface. There were convergence and divergence regions of the strain within the η′ phase, and maximum strain occurred in the position where about 0.25 nm far from the interface, value of the maximum strains was about 2.54%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-204

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, WS. Miller, Recent development in aluminum alloys for aerospace applications, Mater. Sci. Eng. A. 280 (2000) 102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[2] D. Wang, D.R. Ni, Z.Y. Ma, Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy, Mater. Sci. Eng. A. 494 (2008) 360-366.

DOI: 10.1016/j.msea.2008.04.023

Google Scholar

[3] P. C. Bai, X. H. Hou, X. Y. Zhang, C. W. Zhao, Y. M. Xing, Microstructure and mechanical properties of a large billet of spray formed Al–Zn–Mg–Cu alloy with high Zn content, Mater. Sci. Eng. A. 508(2009) 23-27.

DOI: 10.1016/j.msea.2008.12.010

Google Scholar

[4] S. P. Ringer, K. Hono, Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies, Materials Characterization. 44(2004) 101-131.

DOI: 10.1016/s1044-5803(99)00051-0

Google Scholar

[5] V. Hansen, O. B. Karlsen, Y. Langsrud, Precipitates, zones and transitions during aging of Al-Zn-Mg-Zr 7000 series alloy, Materials Science and Technology. 20(2004) 185-193.

DOI: 10.1179/026708304225010424

Google Scholar

[6] D. Dumont, A. Deschamps, Y. Brechet, On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, Mater. Sci. Eng. A. 356 (2003) 326-336.

DOI: 10.1016/s0921-5093(03)00145-x

Google Scholar

[7] M. J. Hÿtch, T. lamann, Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy, Ultramicroscopy. 87(2001) 199-212.

DOI: 10.1016/s0304-3991(00)00099-1

Google Scholar

[8] M. J. Hÿtch, E. Snoeck, R. Kilaas, Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy, Ultramicroscopy. 74 (1998) 131-146.

DOI: 10.1016/s0304-3991(98)00035-7

Google Scholar

[9] M. J. Hÿtch, J. L. Putaux, J. M. Pénisson, Measurement of the displacement field of dislocations to 0. 03Å by electron microscopy, Nature. 423(2003) 270-273.

DOI: 10.1038/nature01638

Google Scholar

[10] J. L. Taraci, M. J. Hÿtch, T. Clement, P. Peralta, M.R. McCartney, Jeff Drucker, et al., Strain mapping in nanowires, Nanotechnology. 16 (2005) 2365.

DOI: 10.1088/0957-4484/16/10/062

Google Scholar

[11] Z. W. Liu, H. M. Xie, D. N. Fang, F. L. Dai, Q. K. Xue, H. Liu, J. F. Jia, Residual strain around a step edge of artificial Al ∕Si (111) - 7 × 7 nanocluster, Appl Phys Lett. 87(2005) 201908.

DOI: 10.1063/1.2130722

Google Scholar

[12] Q. H. Wang, H. M. Xie, Z. W. Liu, X. H. Lou, J. F. Wang, K. W. Xu, Z. H. Zhang, J. H. Liao, C. Z. Gu. Residual stress assessment of interconnects by slot milling with FIB and geometric phase analysis, Opt Laser Eng. 48(2010) 1113-1118.

DOI: 10.1016/j.optlaseng.2009.12.006

Google Scholar