[1]
R. Ferragut, A. Somoza, A. Tolley, Microstructural evolution of 7012 alloy during the early stages of artificial ageing, Acta Materialia. 47 (1999) 4355-4364.
DOI: 10.1016/s1359-6454(99)00315-8
Google Scholar
[2]
B.L. Qu. J.G. Yang, Effects of step quench and aging on mechanical properties and resistance to stress corrosion cracking of 7050 aluminium alloy, Material Transactions. 41 (2000) 783-789.
DOI: 10.2320/matertrans1989.41.783
Google Scholar
[3]
A. Heinz, A. Haszler, C. Keidel, Recent development in aluminium alloys for aerospace applications, Material Science and Engineering A. 280 (2000) 102-107.
DOI: 10.1016/s0921-5093(99)00674-7
Google Scholar
[4]
J. Dong, J.Z. Cui, F.X. Yu, A new way to cast high-alloyed Al–Zn–Mg–Cu–Zr for super-high strength and toughness, Journal of Materials Processing Technology. 171 (2006) 399-404.
DOI: 10.1016/j.jmatprotec.2005.07.010
Google Scholar
[5]
P.A. Rometsch, Y. Zhang, S. Knight, Heat treatment of 7xxx series aluminium alloys-Some recent developments, Transactions of Nonferrous Metals Society of China. 24 (2014) 2003-(2017).
DOI: 10.1016/s1003-6326(14)63306-9
Google Scholar
[6]
D.K. Xu, P.A. Rometsch, N. Birbilis, Improved solution treatment for an as rolled Al-Zn-Mg-Cu alloy. Part I. Characterization of constituent particles and overheating, Material Science and Engineering A. 534 (2012) 234-243.
DOI: 10.1016/j.msea.2011.11.065
Google Scholar
[7]
Y.L. Deng, L. Wan, Y. Zhang, X.M. Zhang, Evolution of microstructures and textures of 7050 Al alloy hot-rolled plate during staged solution heat-treatments, Journal of Alloys and Compounds. 498 (2010) 88-94.
DOI: 10.1016/j.jallcom.2010.03.117
Google Scholar
[8]
G.S. Wang, Z.H. Zhao, Y.H. Zhang, J.Z. Cui, Effects of solution treatment on microstructure and mechanical properties of Al-9. 0Zn-2. 8Mg-2. 5Cu-0. 12Zr-0. 03Sc alloy, Transactions of Nonferrous Metals Society of China. 23 (2013) 2537-2542.
DOI: 10.1016/s1003-6326(13)62765-x
Google Scholar
[9]
G. Liu, J. Sun, C.W. Nan, K.H. Chen, Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys, Acta Materialia. 53 (2005) 3459-3468.
DOI: 10.1016/j.actamat.2005.04.002
Google Scholar
[10]
D.K. Xu, N. Birbilis, D. Lashansky. Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: Optimisation for corrosion resistance, Corrosion Science. 53 (2011) 217-225.
DOI: 10.1016/j.corsci.2010.09.015
Google Scholar
[11]
K.H. Chen, H.W. Liu, Z. Zhang, The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments, Journal of Materials Processing Technology. 142 (2003) 190-196.
DOI: 10.1016/s0924-0136(03)00597-1
Google Scholar
[12]
N.M. Han, X.M. Zhang, S.D. Liu, Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050, Journal of Alloys and Compounds. 509 (2011) 4138-4145.
DOI: 10.1016/j.jallcom.2011.01.005
Google Scholar
[13]
L.P. Huang, K.H. Chen, S. Li, M. Song, Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy, Scripta Materialia. 56 (2007) 305-308.
DOI: 10.1016/j.scriptamat.2006.09.028
Google Scholar
[14]
GB22639-2008, national standard of China. The method for exfoliation corrosion of aluminum alloy.
Google Scholar