[1]
Hirsch J.; Bassan D.; Lahaye C.; Goede M., Aluminum in Innovative Light-weight Car Design[J], Materials Transactions, 2011, 55: 818-824.
Google Scholar
[2]
Kleiner M.; Geiger M.; Klaus A., Manufacturing of Lightweight Component by Metal Forming[J], CIRP Annals-Manufacturing Technology, 2003, 52, 521-542.
DOI: 10.1016/s0007-8506(07)60202-9
Google Scholar
[3]
Liu C.; Northwood D.O.; Bhole S.D., Tensile Fracture Behavior in CO2 Laser Beam Welds of 7075-T6 Aluminum Alloy [J], Materials and Design, 2004, 25: 573-577.
DOI: 10.1016/j.matdes.2004.02.017
Google Scholar
[4]
Sotirov N.; Simon P.; Chimani Ch.; Uffelmann D.; Melzer C., Warm Deep Draw ability of Peak-Aged 7075 Aluminum Sheet Alloy [J], Key Engineering Materials, 2012, 504-506: 955-960.
DOI: 10.4028/www.scientific.net/kem.504-506.955
Google Scholar
[5]
Zuo Yu-bo, Cui Jian-zhong, Zhao Zhi-hao, et al. Structure and properties of 7050 alloy prepared through low frequency electromagnetic casting process [J]. Journal of Northeastern University: Natural Science, 2008, 29(1): 77- 80.
Google Scholar
[6]
Mondolfo L. F. Aluminum alloys: structure and properties [M]. London: Butter Worth Publication, 1976: 842- 844.
Google Scholar
[7]
Tenzler U.; Cyrener E.; Tempus G., Experimental results on phase dissolution and homogenization in continuously cast Al Zn Mg Cu alloys [J], Aluminum, 1999, 75(6): 524- 530.
Google Scholar
[8]
Yang Shu-fang, Lou Song-nian, Xue Xiao-huai. Welding technique of aluminum alloy [J]. Shipbuilding Technology, 2003, 5: 25-28.
Google Scholar
[9]
Zhang Yan, Li Mo. Localized Corrosion Resistance of Al-Cu Alloy's Weld Joints [J]. Xue Huai-guo, The 14th national electrochemical conference proceedings, Yang Zhou, Yangzhou university press, 2008: D-098.
Google Scholar
[10]
Li Jing-yong. High damping aluminium alloy laminated sheet welding sex research [J]. Wang Lin-shu, The ninth national conference on welding, HA Er-bing, China Machine Press, 1999: 78-81.
Google Scholar
[11]
Ruym N. The influence of a Precipitation-Free Zone on the mechanical properties of an Al-Zn-Mg-Cu alloy [J], Act Metallurgic, 1968, 16(3): 327-333.
Google Scholar
[12]
Joseph H.M.; Hyman R. Influence of nonequilibrium second phase particles formed during solidification upon the mechanical behavior of an aluminum alloy[J], Metall. Trans, 1971, (2): 427-432.
DOI: 10.1007/bf02663329
Google Scholar
[13]
Richrard D.; Phrilip N., Calorimetric studies of 7000 series Aluminum alloy: I. Matrix Precipitate characterization of 7075[J], Metallurgical transactions A, 1977, 8(A): 1177-1181.
DOI: 10.1007/bf02667403
Google Scholar
[14]
Zhang Pei-qing. The relationship between the organization and performance and aging conditions for high strength Al-Zn-Mg alloy [J]. Light Alloy Fabrication Technology, 1993, 21(10): 44-47.
Google Scholar
[15]
Gruhrl, Wolfqang. Stress corrosion behavior of high strength Al-Zn-Mg alloys [J], Aluminum, 1978, 54(5): 323-326.
Google Scholar
[16]
Michrael V. HR.; William E.Q.; John T.Q. Improved aluminum alloys for airframe applications [J], Metal Progress, 1977, 111(3): 56-59.
Google Scholar