Synthesis, Structural and Thermal Properties of Layered Perovskites SmBaMn2O5+d for SOFCs Applications

Article Preview

Abstract:

New layered perovskite oxides with samarium (Sm+3) rare earth doped layered perovskite materials were synthesized and characterised by using X-ray diffraction, scanning electron microscopy (SEM), particle size measurements and thermogravimetric analysis (TGA). Sm0.5Ba0.5MnO3-δ and SmBMn2O5+δ, were synthesized by conventional solid state reaction method. Rietveld analysis of XRD data shows that all materials crystallize in the orthorhombic symmetry in the Pmmm space group. SEM images show porous structures which should be suitable as electrode materials for solid oxide fuel cells (SOFCs). TGA results indicate the mass loss of 0.022% for SmBMn2O5+δ. Density calculation shows the materials have about 85% relative density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-200

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Progress in Materials Science, 57 (2012) 804-874.

DOI: 10.1016/j.pmatsci.2011.08.002

Google Scholar

[2] N. Radenahmad, A. Afif, P.I. Petra, S.M.H. Rahman, S. Eriksson, A.K. Azad, Proton-conducting electrolytes for direct methanol and direct urea fuel cells–A state-of-the-art review, Ren. Sus. Ener. Rev. 57 (2016) 1347-1358.

DOI: 10.1016/j.rser.2015.12.103

Google Scholar

[3] A. Ghosh, A.K. Azad, J.T.S. Irvine, Study of Ga Doped LSCM as an Anode for SOFC, ECS Transac. 35 (2011) 1337-1343.

DOI: 10.1149/1.3570120

Google Scholar

[4] A.K. Azad, J.H. Kim, J.T.S. Irvine, Structural, electrochemical and magnetic characterization of the layered-type PrBa 0. 5 Sr 0. 5 Co 2 O 5+ δ perovskite, J. Solid State Chem., 213 (2014) 268–274.

DOI: 10.1016/j.jssc.2014.03.008

Google Scholar

[5] S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y. Ju, H.Y. Jeong, J. Shin, J.T.S. Irvine, G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells, Nat Mater, 14(2) (2015) 205-209.

DOI: 10.1038/nmat4166

Google Scholar

[6] A.K. Azad, J.H. Kim, J.T.S. Irvine, Structure–property relationship in layered perovskite cathode LnBa 0. 5 Sr 0. 5 Co 2 O 5+ δ (Ln= Pr, Nd) for solid oxide fuel cells, J. Power Sources, 196 (2011)7333-7337.

DOI: 10.1016/j.jpowsour.2011.02.063

Google Scholar

[7] Y. Zhang, Z. Su, A. K. Azad, W. Zhou, J.T.S. Irvine, Directly imaging interstitial oxygen in silicate apatite, Adv. Ener. Mater. 2 (2012) 316-329.

DOI: 10.1002/aenm.201100607

Google Scholar

[8] K. Hirota, H. Hatta, M. Io, M. Yoshinaka, O. Yamaguchi, Formation, densification, and electrical conductivity of air-sinterable (Sm1 − xCax)CrO3 prepared through citric acid route, J. Mater. Sci., 38 (2003) 3431–3435.

DOI: 10.1023/a:1025144716714

Google Scholar

[9] Y. Sakata, M. Yoshino, H. Imamura, S. Tsuchiya, C – H exchange reaction of methoxide species on an Sm2O3 catalyst observed by in situ infrared spectroscopy, J. Chem. Soc., Faraday Trans., 86 (1990) 3489-3490.

DOI: 10.1039/ft9908603489

Google Scholar

[10] L. M. Gomez-Sainero, R.T. Baker, I. S. Metcalfe, M. Sahibzada, P. Concepcion, J. M. Lopez-Nieto, Investigation of Sm2O3–CeO2-supported palladium catalysts for the reforming of methanol: The role of the support, Appl. Catalysis A. General, 294 (2005).

DOI: 10.1016/j.apcata.2005.07.022

Google Scholar

[11] J.H. Kim, Y. Kim, P.A. Connor, J.T.S. Irvine, J. Bae, W. Zhou, Structural, thermal and electrochemical properties of layered perovskite SmBaCo 2 O 5+ d, a potential cathode material for intermediate-temperature solid oxide fuel cells, J. Power sources, 194 (2009).

DOI: 10.1016/j.jpowsour.2009.06.024

Google Scholar

[12] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phy. B: Phy. Condens. Matter, 192 (1993) 55–69.

DOI: 10.1016/0921-4526(93)90108-i

Google Scholar

[13] P.E. Werner, L. Eriksson, M. Westdahl, Treor, A semi-exhaustive trial-and-error powder indexing program for all symmetries, J. Appl. Crystallogr., 18 (1985) 367–370.

DOI: 10.1107/s0021889885010512

Google Scholar

[14] M.W. Lufaso, P.M. Edward, Prediction of the crystal structures of perovskites using the software program SPuDS, J. Acta Crystal. B 57 (1998) 725-738.

DOI: 10.1107/s0108768101015282

Google Scholar

[15] S.M. Bukhari, J.B. Giorgi , Surface and redox chemistry of Sm 0. 95 Ce 0. 05 Fe 1− x Ni x O 3− δ perovskites, Solid State Ionics , 194 (2011) 33–40.

DOI: 10.1016/j.ssi.2011.05.008

Google Scholar

[16] T. Behrsing, G.B. Deacon, P.C. Junk, The chemistry of rare earth metals, compounds and corrosion inhibitors, In: Forsyth, Maria, and Hinton, Bruce, (eds. ) Rare Earth-based Corrosion Inhibitors, Elsevier, chapter 1, 2015, pp.1-37.

DOI: 10.1533/9780857093585.1

Google Scholar

[17] A. Klimkowicz, K. Swierczek, A. Takasaki, J. Molenda, Crystal structure and oxygen storage properties of BaLnMn2O5+δ (Ln: Pr, Nd, Sm, Gd, Dy, Er and Y) oxides, Mater. Res. Bull., 65 (2015) 116-122.

DOI: 10.1016/j.materresbull.2015.01.041

Google Scholar

[18] G. Matula, T. Jardiel, R. Jimenez, B. Levenfeld, A. Várez , Microstructure, mechanical and electrical properties of Ni-YSZ anode supported solid oxide fuel cells, Arc. Mater. Sci. Eng., 32 (2008) 21-24.

Google Scholar