Linear Potentiodynamic Characterization of ECAPed Biocompatible AZ91 Magnesium Alloy

Article Preview

Abstract:

Mechanical properties and corrosion resistance of Mg alloys basically depend on their chemical composition. Both the mentioned can be influenced by mechanical or heat treatment. In this work was studied the effect of production technology and resulting microstructure on the corrosion resistance of AZ91 alloy. Corrosion resistance of the alloy (AZ91) was analyzed for material after casting and after treatment by ECAP. Result of ECAP treatment is fine grained microstructure of AZ91 alloy and uniform distributed of present intermetallic phases. Corrosion resistance of the experimental material was analyzed in 0.1 molar solution of NaCl through potentiodynamic tests. The ultra-fine grained microstructure after ECAP results in movement of thermodynamic curves to more positive values of corrosion potential (Ecorr). From thermodynamic point of view, this means, that AZ91 alloy after ECAP has slightly higher corrosion resistance, as AZ91 alloy after casting; however the improvement of corrosion resistance is only minor due to the high reactivity of the magnesium in the corrosion environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

404-408

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.W. Chung, R.G. Ding, Y.L. Chiu, M.A. Hodgson, W. Gao, Microstructure and Mechanical Properties of an As-Cast AZ91 Mg Alloy Processed by Equal Channel Angular Pressing, Mat. Sci. and Eng. 4 (2009) 120-128.

DOI: 10.1088/1757-899x/4/1/012012

Google Scholar

[2] C.W. Chung, R.G. Ding, Y.L. Chiu, W. Gao, Effect of ECAP on microstructure and mechanical properties of cast AZ91 magnesium alloy, J. Phys. 241 (2010) 147-152.

DOI: 10.1088/1742-6596/241/1/012101

Google Scholar

[3] B. Chen, D.L. Lin, L. Jin, X.Q. Zeng, L. Chen, Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties, Mat. Sci. and Eng.: A. 483-484 (2008) 113-116.

DOI: 10.1016/j.msea.2006.10.199

Google Scholar

[4] J. Vrátná, B. Hadzima, M. Bukovina, M. Janeček, Room temperature corrosion properties of AZ31 magnesium alloy processed by extrusion and equal channel angular pressing, J. of Mat. Sci. 48 (2013) 4510-4516.

DOI: 10.1007/s10853-013-7173-4

Google Scholar

[5] S. Fintová, L. Pantělejev, L. Kunz, Microstructure and Mechanical Properties of Ultrafine-Grained Magnesium AZ91 Alloy, Mat. Sci. For. 782 (2014) 384-389.

DOI: 10.4028/www.scientific.net/msf.782.384

Google Scholar

[6] A. Yamashita, Z. Horita, T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mat. Sci. and Eng.: A. 300 (2001) 142-147.

DOI: 10.1016/s0921-5093(00)01660-9

Google Scholar

[7] M. Horynová, J. Zapletal, P. Doležal, P. Gejdoš, Evaluation of fatigue life of AZ31 magnesium alloy fabricated by squeeze casting, Mat. and Des. 45 (2013) 253-264.

DOI: 10.1016/j.matdes.2012.08.079

Google Scholar

[8] R. Štěpánek, L. Pantělejev, O. Man, Thermal stability of magnesium alloy AZ91 prepared by severe plastic deformation, Mat. Eng. 20 (2013) 160-166.

Google Scholar

[9] X. Molodova, G. Gottstein, R.J. Hellmig, On the Thermal Stability of ECAP Deformed FCC Metals, Mat. Sci. For. 558-559 (2007) 259-264.

DOI: 10.4028/www.scientific.net/msf.558-559.259

Google Scholar

[10] M. Gupta, N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites, John Wiley & Sons. 2011. ISBN: 978-0-470-49417-2. p.257.

DOI: 10.1017/s0001924000005972

Google Scholar

[11] D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, J.F. Fan, Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing, Corr. Sci. 53 (2011) 362-373.

DOI: 10.1016/j.corsci.2010.09.044

Google Scholar

[12] A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3. 5 wt. % NaCl, Corr. Sci. 50 (2008) 823-834.

DOI: 10.1016/j.corsci.2007.11.005

Google Scholar

[13] H.S. Kim, W.J. Kim, Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containingvery fine particles of Mg17Al12 phase, Corr. Sci. 75 (2013) 228-238.

DOI: 10.1016/j.corsci.2013.05.032

Google Scholar

[14] R. Ambat, N.N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy, Corr. Sci. 42 (2000) 1433-1455.

DOI: 10.1016/s0010-938x(99)00143-2

Google Scholar

[15] B. Hadzima, M. Janeček, P. Suchý, J. Müller, L. Wagner, Microstructure and Corrosion Properties of Fine-Grained Mg-Based Alloys, Mat. Sci. For. 584-586 (2008) 994-999.

DOI: 10.4028/www.scientific.net/msf.584-586.994

Google Scholar

[16] B. Hadzima, T. Liptáková, Fundamentals of electrochemical corrosion of metals, 1. edition. Žilina: EDIS publishers ŽU. 2008. 112 s. ISBN 978-80- 8070-876- 4.

Google Scholar