[1]
V. Buchta, M. Janulikova, R. Fojtik, Experimental Tests of Reinforced Concrete Foundation Slab, Procedia Engineering, 114, pp.530-537, DOI: 10. 1016/j. proeng. 2015. 08. 102, (2015).
DOI: 10.1016/j.proeng.2015.08.102
Google Scholar
[2]
R. Cajka, J. Labudkova, Fibre Concrete Foundation Slab Experiment and FEM Analysis, Key Engineering Materials, Vols. 627, pp.441-444, Trans Tech Publications, Switzerland, doi: 10. 4028/www. scientific. net/KEM. 627. 441, (2015).
DOI: 10.4028/www.scientific.net/kem.627.441
Google Scholar
[3]
J. Labudkova, R. Cajka, Comparison of the Results from Analysis of Nonlinear Homogeneous and Nonlinear Inhomogeneous Half-Space, Procedia Engineering, 114, pp.522-529, DOI: 10. 1016/j. proeng. 2015. 08. 101, (2015).
DOI: 10.1016/j.proeng.2015.08.101
Google Scholar
[4]
J. Halvonik, L. Fillo, The Maximum Punching Shear Resistance of Flat Slabs, Procedia Engineering, 65, 376-381, ISSN 1877-7058, (2013).
DOI: 10.1016/j.proeng.2013.09.058
Google Scholar
[5]
P. Mynarcik, Measurement processes and destructive testing of fiber concrete foundation slab pattern, Advanced Material Research, TTP, Switzerland, 1020, 221-226, ISSN (Online) 1662-8985, ISSN(Print) 1022-6680, DOI: 10. 4028/www. scientific. net/AMR. 1020. 221, (2014).
DOI: 10.4028/www.scientific.net/amr.1020.221
Google Scholar
[6]
Y. Ding, W. Kusterle, Compressive stress-strain relationship of steel fibre-reinforced concrete at early age, Cement and Concrete Research, 30 (10), pp.1573-1579. DOI: 10. 1016/S0008-8846(00)00348-3, (2000).
DOI: 10.1016/s0008-8846(00)00348-3
Google Scholar
[7]
H. Song, H. Wang, Static mechanical properties and impact resistance of steel fiber reinforced high-strength lightweight aggregate concrete, Advanced Materials Research, 261-263, pp.115-119. DOI: 10. 4028/www. scientific. net/AMR. 261-263. 115R, (2011).
DOI: 10.4028/www.scientific.net/amr.261-263.115
Google Scholar
[8]
R. Cajka, V. Krivy, D. Sekanina, Design and development of a testing device for experimental measurements of foundation slabs on the subsoil, Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series, 11 (1), 1 - 5, ISSN (Online) 1804-4824, ISSN (Print) 1213-1962, DOI: 10. 2478/v10160-011-0002-2, (2011).
DOI: 10.2478/v10160-011-0002-2
Google Scholar
[9]
R. Cajka, J. Labudkova, P. Mynarcik, Numerical solution of soil - foundation interaction and comparison of results with experimental measurements, International Journal of GEOMATE, 11 (1), pp.2116-2122, (2016).
Google Scholar
[10]
R. Cajka, J. Labudkova, Finite element analyses of soil-foundation interaction and comparison with experimental measurements, Civil-Comp Proceedings, 108, DOI: 10. 4203/ccp. 108. 7, (2015).
DOI: 10.4203/ccp.108.7
Google Scholar
[11]
M. Janulikova, The New Options to Reduce Shear Stress into Foundation Structure, Procedia Engineering, 114, pp.514-521, DOI: 10. 1016/j. proeng. 2015. 08. 100, (2015).
DOI: 10.1016/j.proeng.2015.08.100
Google Scholar
[12]
J. Kratky, K. Trtik, J., Vodicka, Reinforced concrete structures. 1. Issue. Prague Information Centre ČKAIT, September 1999 Edition: Concrete Construction. (In Czech).
Google Scholar
[13]
M. Janulikova, M. Stara, P. Mynarcik, Sliding joints from traditional asphalt belts, Advanced Materials Research, 1020, pp.335-340, DOI: 10. 4028/www. scientific. net/AMR. 1020. 33, (2014).
DOI: 10.4028/www.scientific.net/amr.1020.335
Google Scholar
[14]
M. Janulikova, Behavior of selected materials to create sliding joint in the foundation structure, Advanced Materials Research, 838-841, pp.454-457, DOI: 10. 4028/www. scientific. net/AMR. 838-841. 454, (2014).
DOI: 10.4028/www.scientific.net/amr.838-841.454
Google Scholar
[15]
M. Janulikova, Comparison of the shear resistance in the sliding joint between asphalt belts and modern PVC foils, Applied Mechanics and Materials, 501-504, pp.945-948, DOI: 10. 4028/www. scientific. net/AMM. 501-504. 945, (2014).
DOI: 10.4028/www.scientific.net/amm.501-504.945
Google Scholar