Synthesis of Fe3O4/TiO2-Co Nanocomposite as Model of Photocatalyst with Magnetic Properties

Article Preview

Abstract:

Synthesis and characterization of Fe3O4/TiO2-Co as magnetic photocatalyst had been done. The research was started with the preparation of magnetite through co-precipitation and sonication system, followed by preparation of Co-doped TiO2 using sol-gel method and then mixed both of them with a ratio of Fe3O4:TiO2 1:3; 1:9; 1:15 (FT3, FT9, FT15) and ended by calcination. The product was characterised by using Fourier transform infrared spectrophotometer (FTIR), X-ray diffractometer (XRD), scanning electron microscope-energy dispersive X-ray spectrophotometer (SEM-EDX), UV-Specular reflectance spectrophotometer (SR-UV) and vibrating sample magnetometer (VSM). The resulting material showed a maximum value of band gap energy at 2.83 eV in FT3. The effect of Fe3O4:TiO2 ratio known can be affected the magnetic moment and showed the optimum result 2.0 emu/g in FT3. The magnetic character of Fe3O4/TiO2-Co also known can be affected by the magnetite crystalline size from the composites composition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-19

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnwmann, Environmental Aplications of Semiconductor Photocatalysis, J. Chem. Rev. 95 (1995) 69.

Google Scholar

[2] S. Yin, B. Liu, P.L. Zhang. T. Morikawa, K. Yamanaka, T. Sato, Photocatalytic Oxidation of NOx under Visible LED Light Irradiation over Nitrogen-Doped Titania Particles with Iron or Platinum Loading, J. Phys. Chem. C. 112 (2008) 12425-12431.

DOI: 10.1021/jp803371s

Google Scholar

[3] H. Taoda, Development of TiO2 photocatalysts suitable for practical use and their applications in environmental cleanup, Res. Chem. Intermed. 34 (2008) 417.

DOI: 10.1163/156856708784040579

Google Scholar

[4] Y. Shen, T. Xiong, H. Du, H. Jin, J. Shang, K. Yang, Phosphorous, Nitrogen, and Molybdenum Ternary Co-Doped TiO2: Preparation and Photocatalytic Activities Under Visible Light, J. Sol-Gel Sci. Technol, 50 (2009) 98-102.

DOI: 10.1007/s10971-009-1903-8

Google Scholar

[5] C. Xu, G.P. Rangaiah, X.S. Zhao, Photocatalytic Degradation of Methylene Blue by Titanium Dioxide: Experimental And Modeling Study, Ind. Eng. Chem. Res. 53 (2014) 14641-14649.

DOI: 10.1021/ie502367x

Google Scholar

[6] M.H. Habibi, S. Tangestaninejad, B. Yadollahi, Photocatalytic mineralisation of mercaptans as environmental pollutants in aquatic system using TiO 2 suspension, Appl. Catal. B. 33 (2001) 57-63.

DOI: 10.1016/s0926-3373(01)00158-8

Google Scholar

[7] X. Chen, S.S. Mau, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modification, and Application, Chem. Rev. 107 (2007) 2891-2959.

Google Scholar

[8] V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, A. Rostami-Vartooni, Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst, J. Iran. Chem. Soc. 6 (2009) 578.

DOI: 10.1007/bf03246537

Google Scholar

[9] M.N. Rashed, A.A. El-Amin, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources, Int. J. Phys. Sci. 2 (3) (2007) 73-81.

Google Scholar

[10] E. S. Kunarti., E.T. Wahyuni, I.A. Hapsari, Incorporation of Titania into Silica Matrix and Its Effect Toward the Photocatalytic Activity of Titania on the Degradation of Methyl Orange, Journal of People and Environtment. 18 (1) (2011) 1-8.

Google Scholar

[11] N.A. Laoufi, D. Tassalit, F. Bentahar, The Degradation of Phenol in Water Solution by TiO2 Photocatalyst in A Helical Reactor, Global NEST. 10 (8) (2008) 404-418.

DOI: 10.30955/gnj.000525

Google Scholar

[12] N. Miguel, M.P. Ormad, R. Mosteo, J. L. Ovelleiro, Photocatalytic Degradation of Pesticides in Natural Water: Effect of Hydrogen Peroxide, Int. J. Photoenergy, 2012 (2011) 1-11.

DOI: 10.1155/2012/371714

Google Scholar

[13] X. Wang, S.O. Pehkonen, A. K. Ray, Photocatalitic Reduction of Hg(II) on Two Commercial TiO2 Catalysts, Electrochim. Acta. 49 (2004) 1435-1444.

DOI: 10.1016/s0013-4686(03)00907-1

Google Scholar

[14] E.S. Kunarti, A. Syoufian, I.S. Budi, A.R. Pradipta, Preparation and Properties of Fe3O4/SiO2/TiO2 Core-Shell Nanocomposite as Recoverable Photocatalyst, Asian J. Chem. 28 (6) (2016) 1343-1346.

DOI: 10.14233/ajchem.2016.19697

Google Scholar

[15] U. Diebold, The Surface Science of Titanium Dioxide, Surf. Sci. Rep. 48 (2003) 53-229.

Google Scholar

[16] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrel, Photo-Electrochemical Hydrogen Generation From Water using Solar Energy, Materials Related Aspects, Inst. J. Hydrogen Energy, 27 (2002) 991-1022.

DOI: 10.1016/s0360-3199(02)00022-8

Google Scholar

[17] H. Lee, Y. K. Park, S.J. Kim, B.H. Kim, S.C. Jung, Titanium Dioxide Modification With Cobalt Oxide Nanoparticles for Photocatalysis, J. Ind. Eng. Chem. 32 (2015) 259-263.

DOI: 10.1016/j.jiec.2015.08.025

Google Scholar

[18] J. Choi, H. Park, M.R. Hoffmann, Effect of Single Metal-Ion Doping on The Visible-Light Photoreactivity of TiO2, J. Phys. Chem, 114 (2010) 783-792.

DOI: 10.1021/jp908088x

Google Scholar

[19] R. Amadelli, L. Samiolo, A. Maldotti, A. Molinari, M. Valigi, D. Gazzoli, Preparation, Characterization, and Photocatalytic Behavious of Co-TiO2 with Visible Light Response, Inter. J. Photoenergy, 9 (2008).

DOI: 10.1155/2008/853753

Google Scholar

[20] M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-Gel Preparation and Characterization of Co/TiO2 Nanoparticles: Application to The Degradation of Methylorange, J. Iran. Chem. Soc. 7 (2010) S52-S58.

DOI: 10.1007/bf03246184

Google Scholar

[21] M. Abbas, B. Rao, B. Parvatsheeswara, V. Reddy, C. Kim, Fe3O4/TiO2 Core/Shell Nanocubes: Single-Batch Surfactantless Synthesis, Characterization and Efficient Catalyst for Methylene Blue Degradation, Cer. Int. 40 (2014) 11177-11186.

DOI: 10.1016/j.ceramint.2014.03.148

Google Scholar

[22] A. Banisharif, S.H. Elahi, A.A. Firooz, A.A. Khodadadi, Y. Mortazavi, TiO2/Fe3O4 Nanocomposite Photocatalyst for Enhanced Photo-Decolorization of Congo Red Dye, Int. J. Nanosci. 9(4) (2013) 193-202.

Google Scholar

[23] H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, Synthesis of Fe3O4 Nanoparticles with Various Sizes and Magnetic Properties by Controlled Hydrolysis, J. Colloid Interface Sci. 314 (2007) 274-280.

DOI: 10.1016/j.jcis.2007.05.047

Google Scholar