Durability of Alkali-Activated Fly Ash/Slag Concrete

Article Preview

Abstract:

This study investigated the durability of alkali-activated binders based on blends of fly ash (FA) and ground granulated blast furnace slag (GGBFS). Five fly ash-to-slag ratios of 100/0, 75/25, 50/50, 25/75, and 0/100 by mass were selected to produce alkali-activated fly ash/slag (AAFS) concrete. Sodium oxide (Na2O) concentrations of 6% and 8% of binder weight and activator modulus ratios (mass ratio of SiO2 to Na2O) of 0.8, 1.0, and 1.23 were used as alkaline activators. Test results show that the total charge passed of AAFS concrete is between 2500 and 4000 coulombs, higher than the comparable OPC concrete. However, AAFS concrete exposed to sulfate attack performed better than OPC concrete. Based on the results, 100% slag-based AAFS concrete with Na2O concentration of 8% and activator modulus ratio of 1.23 has the superior performances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-161

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M Chi, R Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 40 (2013) 291-298.

DOI: 10.1016/j.conbuildmat.2012.11.003

Google Scholar

[2] C Li, H Sun, L Li. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem. Concr. Res. 40 (2010) 1341-1349.

DOI: 10.1016/j.cemconres.2010.03.020

Google Scholar

[3] NK Lee, HK Lee. Reactivity and reaction products of alkali-activated fly ash/slag paste. Constr. Build. Mater. 81 (2015) 303-312.

DOI: 10.1016/j.conbuildmat.2015.02.022

Google Scholar

[4] M Komljenovi´c, Z Bascarevi´c, V Bradi´c. Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J. Hazard. Mater. 181 (2010) 35-42.

Google Scholar

[5] Y Jun, JE Oh. Mechanical and microstructural dissimilarities in alkali-activation for six Class F Korean fly ashes. Constr. Build Mater 52 (2014) 396-403.

DOI: 10.1016/j.conbuildmat.2013.11.058

Google Scholar

[6] M Criado, AF Jiménez, I Sobrados, A Palomo, J Sanz. Effect of relative humidity on the reaction products of alkali activated fly ash. J. Eur Ceram Soc 32(2012) 2799-2807.

DOI: 10.1016/j.jeurceramsoc.2011.11.036

Google Scholar

[7] M Chi, R Huang. Effects of Dosage and Modulus Ratio of Alkali-Activated Solution on the Properties of Slag Mortars. Adv. Sci. Lett. 16(2012) 7-12.

DOI: 10.1166/asl.2012.3313

Google Scholar

[8] SA Bernal, RMd Gutiérrez, AL Pedraza, JL Provis, ED Rodriguez, S Delvasto. Effect of binder content on the performance of alkali-activated slag concretes, Cem. Concr. Res. 42 (2011) 1-8.

DOI: 10.1016/j.cemconres.2010.08.017

Google Scholar

[9] M Chi, Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr. Build. Mater. 35 (2012) 240-245.

DOI: 10.1016/j.conbuildmat.2012.04.005

Google Scholar

[10] AAM Neto, MA Cincotto, W Repette. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 38 (2008) 565-574.

DOI: 10.1016/j.cemconres.2007.11.002

Google Scholar

[11] C Shi, AF Jiménez, A Palomo. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41 (2011) 750-763.

DOI: 10.1016/j.cemconres.2011.03.016

Google Scholar

[12] I Ismail, SA Bernal, JL Provis, RS Nicolas, S Hamdan, JSJv Deventer. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 45 (2014) 125-135.

DOI: 10.1016/j.cemconcomp.2013.09.006

Google Scholar

[13] F-Q Zhao, W Ni, H-J Wang, H-J Liu. Activated fly ash/slag blended cement. Resour. Conserv. Recy. 52 (2007) 303-313.

DOI: 10.1016/j.resconrec.2007.04.002

Google Scholar

[14] NK Lee, HK Lee. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 47 (2013) 1201-1209.

DOI: 10.1016/j.conbuildmat.2013.05.107

Google Scholar

[15] NK Lee, JG Jang, HK Lee. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 53 (2014) 239-248.

DOI: 10.1016/j.cemconcomp.2014.07.007

Google Scholar

[16] F Collins, JG Sanjayan. Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cem. Concr. Res. 29 (1999) 607–610.

DOI: 10.1016/s0008-8846(98)00203-8

Google Scholar

[17] F Collinsa, JG Sanjayan. Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem. Concr. Res. 30 (2000) 791 - 798.

DOI: 10.1016/s0008-8846(00)00243-x

Google Scholar

[18] S Bernal, RD Gutierrez, S Delvasto, E Rodriguez. Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 24 (2010) 208 - 214.

DOI: 10.1016/j.conbuildmat.2007.10.027

Google Scholar