Characterisation of Refractory Ceramic Pressed Body Containing Industrial Waste

Article Preview

Abstract:

This study investigates the use of an industrial refractory brick waste in the refractory based silica and alumina ceramic body. From the characterization of the waste, a mixture containing a clay, silica, alumina and waste was processed via wet route and sintered at 1400 °C. The specimens were evaluated in dry (density) and after sintering (linear shrinkage, density and modulus of rupture).Microstructural characterization by scanning electron microscopy (secondary electron) revealed a microstructure unevenly and a presence of big porous which shows also small amounts of vitreous phase, which can be related to sintering process not fully finished. The results for the linear shrinkage (about 6 %) and modulus of rupture at three points (about 63 MPa) showed that the mixture containing the refractory brick waste and the processing conditions were satisfactory for obtaining a suitable refractory material for the manufacture of bricks for melting furnaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-76

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G.M. Othman, W.M.N. Nour: Ceram. Int. Vol. 31 (2005), p.1053.

Google Scholar

[2] J.P. Bennett, M.A. Maginnis: Ceram Eng. Sci. Proc. (1995).

Google Scholar

[3] G. Ferreira, A.M. López-Sabirón, J. Aranda, M.D. Mainair-Toledo, A. Aranda-Ursón: J. Clean. Prod. Vol. 88 (2015).

Google Scholar

[4] N.S. Koksal: Comp. Mater. Sci. Vol. 47 (2009), p.86.

Google Scholar

[5] K.S. Kwong, J.P. Bennett: J. Min. Mater. Charact. Eng. Vol. 1 (2002), p.69.

Google Scholar

[6] M. Dal Bó, P.A. Barbetta, D. Hotza: Ceram. Ind. Vol. 12 (2007), p.42.

Google Scholar

[7] S.B. Frade: Estudo de massas refratárias de vibração a seco para indutores de fornos de indução. Mestrado (Dissertação) Joinville, (2015).

Google Scholar

[8] H. Fang, J.D. Smith, K.D. Peaslee, Study of spent refractory waste recycling from metal manufacturers in Missouri, Resour. Conserv. Recy. (1999) 111-124.

DOI: 10.1016/s0921-3449(98)00059-7

Google Scholar

[9] H. E Nystrom W.R. Kehr, J. Pollock: Resour. Conserv. Recy. Vol. 31 (2001), p.317.

Google Scholar

[10] A. Aranda Usón, A.M. Lopez-Sabiron, G. Ferreira, E. L Sastresa: Energy Rev. Vol. 23 (2013), p.242.

Google Scholar

[11] A. Aranda Usón, G. Ferreira, D. Z. Vasquez, I.Z. Bribian, E.L. Sastresa: J. Clean. Prod. Vol. 20 (2012), p.38.

Google Scholar

[12] R.G. Lule-Gonzalez, F. Lopez-Acosta, R. Rodriguez: AIST Iron & Steel Technology, (2005).

Google Scholar

[13] M. Jung, I.S. Camisa, I. Albanaz, S.L.S. Pereira, M. Cargnin: Rev. Téc. Cient. (IFSC) 3 (2012).

Google Scholar

[14] ASTM – C1505 – 15, Standard Test Method for Determination of Breaking Strength and Modulus of Rupture of Ceramic Tiles and Glass Tiles by Three-Point Loading, ASTM International, West Conshohocken, (2015).

DOI: 10.1520/c1505-15r22

Google Scholar

[15] E. Saito: Caracterização de Concretos Refratários Bombeáveis para Aplicação em Canais de Corrida e Carros Torpedos e Determinação dos Mecanismos de Desgaste. Master (Dissertation). Lorena, 2009. Escola de Engenharia de Lorena (EEL). (SP).

DOI: 10.11606/d.97.2009.tde-26092012-171135

Google Scholar

[16] J.R. Silva, Caracterização Físico-Química de Massas Cerâmicas e suas Influências nas Propriedades Finais dos Revestimentos Cerâmicos. Mestrado (Dissertação). Curitiba, 2005. Universidade Tecnológica Federal do Paraná (UTFPR). (PR).

DOI: 10.21474/ijar01/1535

Google Scholar

[17] E. Sanchéz, E. Monfort: Tecnologia de Fabricação de Revestimentos Cerâmicos. (Associação Paulista das Cerâmicas de Revestimento Rio Claro, 2003).

Google Scholar

[18] S.J.G. Sousa, J.N.F. Holanda: 49° Congresso Brasileiro de Cerâmica (CBC). São Pedro, 06-09 de Junho 2005. Proceeding.. São Pedro 2005. (SP).

Google Scholar