Structural, Morphological and Textural Features of EDTA-Citrate-Synthesized BaPrO3 Perovskite-Type Oxide

Article Preview

Abstract:

BaCeO3 has attracted great interest in research worldwide, whether doped with other elements on the site A and / or B of perovskite ABO3 or not, thus enabling its use in different applications. However, the properties exhibited by perovskite depend on partial or total replacement at the site, as well as the applied synthesis method. In this work we studied crystal structure, crystallographic parameters, morphology and textural properties of BaPrO3 perovskite synthesized by EDTA-Citrate complexation process. The adopted methodology makes it possible to obtain powders with orthorhombic crystal structure ( a=6.07 Å; b=6.3 Å e c=8.7 Å) and crystallite size of approximately 100 nm. That perovskite has dense and irregular agglomerates with surface area and pore volume of about 2.37 m2 g-1 and 0.7x10-8m3g-1, respectively. Finally, the methodology has demonstrated effectiveness in achieving crystalline phase with similar characteristics and properties obtained by different methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-54

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. G Tejuca, J. L. J. M. D. Tascon: Adv. Catal. Vol. 36 (1989), p.237.

Google Scholar

[2] P. J. Saines, B.J. Kennedy, R.I. Smith: Mater. Res. Bull. Vol. 44 (2009), p.874.

Google Scholar

[3] C.Y. Jones: J. Appl. Physics Vol. 97 (2005), pp.114908-01.

Google Scholar

[4] G. Cao, T. Yuen: J. Appl. Physics Vol. 70 (1991), p.6332.

Google Scholar

[5] C.S. Knee, A., Norby T. Magras, R.I. Smith: J. Materials Chem. Vol. 19 (2009), p.3238.

Google Scholar

[6] A.G. Santos, R.R. Silva, A. G. O. Dantas, M. F. Lobato, C. P. Souza: Revista Verde Vol. 9 (2014), p.149.

Google Scholar

[7] M.F. Lobato, C.P. Souza, R.H. Passos, A.G. Santos, I.R.B. Gomes: Cerâmica Vol. 60 (2014), p.532.

Google Scholar

[8] R.A. Young: The Rietveld Method. (International Union of Crystallography (IUCr) Oxford Science Publications 2002).

Google Scholar

[9] H. Patra, S.K. Rout, S.K. Pratihar, S. Bhattacharya: Powder Technol. Vol. 209 (2011), p.98.

Google Scholar

[10] S.J. Stokes, M.S. Islam: J. Materials Chem. (2010), p.6258.

Google Scholar

[11] D.J. Goossens, RA. Robinson, M. T.F. Telling: Physica B Vol. 352 (2004), p.105.

Google Scholar

[12] M.N. Popova, S.A. Klimin, B.Z. Malkin, L.A. Kasatkina, G. Cao, J. Crow: Physica Letter A Vol. 223 (1996), p.308.

Google Scholar

[13] A.J. Jacobsen, B.C. Tofield, B.E.F. Fender: Acta Crystallographica B Vol. 28 (1972), p.956.

Google Scholar

[14] A. Magraso, A. Calleja, X.G. Capdevila, F. Espiell: Solid State Ionics Vol. 166 (2004), p.359.

Google Scholar

[15] K.K. Sosetsu: The Chemical Society of Japan. (Japan Scientific Societies Press Tokyo, second ed. 32 1997).

Google Scholar

[16] W.J. Thomas, B. Crittenden: Adsorption Technology & Design. (Butterworth-Heinemann, 1998).

Google Scholar