Synthesis and Characterization of HMOR and Catalyst MoO3/HMOR, NiO/HMOR and Co2O3/HMOR

Article Preview

Abstract:

The mordenite zeolite is one of the most important industrially zeolites, used as a solid catalyst for various reactions hydrocracking, hydroisomerization, alkylation, reforming, alkane oxidation, Fischer-Tropsch reaction. The aim of this study was to hydrothermal synthesis mordenite zeolite in its sodium form under hydrothermal conditions, in organic-free synthesis. The form HMOR of the zeolite mordenite was obtained by an ion exchange. For the preparation of the catalysts precursor salts were used: ammonium heptamolybdate, nickel nitrate, cobalt nitrate dispersed from the impregnation by incipient wetness impregnation, such impregnated supports were calcined at 550 °C/4h to obtain the catalyst. The zeolite synthesized in the sodium form NaMOR in its ammonium form NH4MOR in form acid HMOR and their catalysts MoO3/HMOR, NiO/HMOR and Co2O3/HMOR were characterized by X-ray diffraction (XRD) and Fluorescence Spectroscopy of by Energy X-ray dispersive (FRX-ED). From the results it was possible to observe the formation of zeolite phase mordenite in its sodium and acid form and the effective impregnation and formation of the proposed catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ren, C. Gong, P. Zeng, Q. Guo, B. Shen: Fuel Vol. 166 (2016), p.347.

Google Scholar

[2] M. Guisnet, F.R. Ribeiro: Zeólitos: Um Nanomundo ao Serviço da Catálise. (Fundação Calouste Gulbenkian Lisboa, 2004).

Google Scholar

[3] R. Ciola: Fundamentos da Catálise (Editora Moderna Ed. da Universidade de São Paulo, 1981).

Google Scholar

[4] M. Stratakis, H. Garcia: Chem. Rev. Vol. 112 (2012), p.4469.

Google Scholar

[5] R. Chinchilla, C. Nájera: Chem. Rev. Vol. 107 (2007), p.874.

Google Scholar

[6] R. Jana, T.P. Pathak, M.S. Sigman: Chem. Rev. Vol. 111 (2011), p.1417.

Google Scholar

[7] A. Dhakshinamoorthy, S. Navalon, M. Alvaro, H. Garcia: J. Catal. Vol. 5 (2012), p., 46.

Google Scholar

[8] M.T. Heshmatollah, A.M. Nasrollahzadeh, T.A. Kamali: J. Colloid Interface Sci. Vol. 471 (2016), p.37.

Google Scholar

[9] A. Corma: J. Catal. Vol. 216 (2003), p.298.

Google Scholar

[10] C.M. Correa, F.C. Castrillón: J. Mol. Catal. A: Chem. Vol. 228 (2005), p.267.

Google Scholar

[11] J. Plana-Pallejà, S. Abelló, C. Berrueco, D. Montané: Applied Catalysis A: General Vol. 515 (2016), p.126.

DOI: 10.1016/j.apcata.2016.02.004

Google Scholar

[12] J.F. Costa Serra, M.T. Navarr, F. Rey, A. Chica: International Journal of Hydrogen Energy Vol. 37 (2012), p.7101.

Google Scholar

[13] B.O. Hincapie, L.J. Garces, Q. Zhang, A. Sacco, S.L. Suib: Microporous Mesoporous Mater. Vol. 67 (2004), p.19.

DOI: 10.1016/j.micromeso.2003.09.026

Google Scholar

[14] G. J. Kim, W.S. Ahn: Zeolites Vol. 11 (1991), p.745.

Google Scholar

[15] M. Campanati, G. Fornasari, A. Vaccari: Catalysis Today Vol. 77 (2003), p.299.

Google Scholar

[16] M.M. Mohamed, T.M. Salama, I. Othman, I.A. Ellah: Microporous Mesoporous Mater. Vol. 84 (2005), p.84.

Google Scholar

[17] M. Elanany, D.P. Vercauteren, M. Koyama, M. Kubo, P. Selvam, E. Broclawik, A. Miyamoto: Journal of Molecular Catalysis A Chemical Vol. 243 (2006), p.1.

DOI: 10.1016/j.molcata.2005.08.014

Google Scholar

[18] A. Gervasini: Appl. Catal. A Vol. 180 (1999), p.71–82.

Google Scholar

[19] M.A. Ulla, R. Mallada, L.B. Gutierrez, L. Casado, J.P. Bortolozzi, E.E. Miró, J. Santamaría: Catalysis Today Vol. 133–135 (2008), p.42.

DOI: 10.1016/j.cattod.2007.11.052

Google Scholar