[1]
G. Aygün, O. Demirkiran, T. Utku, B. Mete, S. Urkmez, M. Yilmaz, H. Yaşar, Y. Dikmen, R. Oztürk, Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit, J. Hosp. Infect. 524 (2002).
DOI: 10.1053/jhin.2002.1300
Google Scholar
[2]
R. Zhu, J. Zhu, G. Fei, P. Yuan, Regeneration of spent organoclays after the sorption of organic pollutants: A review, J. Environ. Manage. 9011 (2009) 3212-3216.
DOI: 10.1016/j.jenvman.2009.06.015
Google Scholar
[3]
H.B. Møller, S.G. Sommer, B.K. Ahring, Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure, J. Environ. Qual. 331 (2004) 27-36.
DOI: 10.2134/jeq2004.2700
Google Scholar
[4]
B.M.D.C. Filho, V.M.D. Silva, J.D.O. Silva, A.E.D.H. Machado, A.G. Trovó, Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: Biodegradability and toxicity assessment, J. Environ. Manage. 174 (2016).
DOI: 10.1016/j.jenvman.2016.03.019
Google Scholar
[5]
W. Wang, Z. Xu, H. Li, W. Jin, Optimization of coagulation–flocculation process for combined sewer overflow wastewater treatment using response surface methodology, Desalin. Water. Treat. 1230 (2015) 1-9.
DOI: 10.1080/19443994.2015.1067832
Google Scholar
[6]
X. Zhang, Z. Li, K. Liu K, L. Jiang, Bioinspired Multifunctional Foam with Self-Cleaning and Oil/Water Separation, Adv. Funct. Mater. 2322 (2013) 2881-2886.
DOI: 10.1002/adfm.201202662
Google Scholar
[7]
J.Altmann, D.Rehfeld, K. Träder, A. Sperlich, M. Jekel, Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal, Water. Res. 92 (2016).
DOI: 10.1016/j.watres.2016.01.051
Google Scholar
[8]
B. Armağan, M. Turan, M.S. Celik, Equilibrium studies on the adsorption of reactive azo dyes into zeolite, Desalination. 1701 (2004) 33-39.
DOI: 10.1016/j.desal.2004.02.091
Google Scholar
[9]
D. Zadaka-Amir, N. Bleiman, Y.G. Mishael, Sepiolite as an effective natural porous adsorbent for surface oil-spill, Micropor. Mesopor. Mat. 169 (2013) 153-159.
DOI: 10.1016/j.micromeso.2012.11.002
Google Scholar
[10]
M. Alkan, G. Tekin, H. Namli, FTIR and zeta potential measurements of sepiolite treated with some organosilanes, Micropor. Mesopor. Mat. 84 (2005) 75-83.
DOI: 10.1016/j.micromeso.2005.05.016
Google Scholar
[11]
D. Margarita, L. Mar, A. Pilar, J.A. Antonio, B.Julio, R.Eduardo, Microfibrous Chitosan-Sepiolite Nanocomposites, Chem. Mater. 186 (2006) 1602-1610.
Google Scholar
[12]
W. Kuang, A.F. Glenn, D. Christian, C. Blanca, Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite, Chem. Mater. 1526 (2003) 4956-4967.
DOI: 10.1021/cm034867i
Google Scholar
[13]
N.I. Ilic, S.S. Lazarevic, V.N. Rajakovic-Ognjanovic, L.V. Rajakovic, D. Janackovic, R.D. Petrovic, The sorption of inorganic arsenic on modified sepiolite: Effect of hydrated iron(III)-oxide, J. Serb. Chem. Soc. 797 (2014) 815-828.
DOI: 10.2298/jsc130912017i
Google Scholar
[14]
Q. Shen, J. Ouyang, Y. Zhang, H. Yang, Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage, Appl. Clay. Sci. 146 (2017) 14-22.
DOI: 10.1016/j.clay.2017.05.035
Google Scholar
[15]
M. Suárez, J. García-Rivas, E. García-Romero, N. Jara, Mineralogical characterisation and surface properties of sepiolite from Polatli (Turkey), Appl. Clay. Sci. 131 (2016) 124-130.
DOI: 10.1016/j.clay.2015.12.032
Google Scholar
[16]
Z. Cheng, R. Yang, Y. Wang. Mn/sepiolite as the heterogeneous ozonation catalysts applied to the advanced treatment of regenerated-papermaking wastewater, Water. Sci. Technol. 755 (2017) 1025-1033.
DOI: 10.2166/wst.2016.583
Google Scholar
[17]
F. Santiago, A.E. Mucientes, M. Osorio M, F.J. Poblete, Synthesis and swelling behaviour of poly (sodium acrylate)/sepiolite superabsorbent composites and nanocomposites, Polym. Int. 558 (2010) 843-848.
DOI: 10.1002/pi.2016
Google Scholar
[18]
H.C. Bidsorkhi, M. Soheilmoghaddam, R.H. Pour, H. Adelnia, Z. Mohamad, Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites, Polym. Test. 378 (2014) 117-122.
DOI: 10.1016/j.polymertesting.2014.05.007
Google Scholar
[19]
N. Huang, Z. Chen, H. Liu, J.Wang, Thermal Stability and Degradation Kinetics of Poly(Methyl Methacrylate)/Sepiolite Nanocomposites by Direct Melt Compounding, J. Macromol. Sci. B. 524 (2013) 521-529.
DOI: 10.1080/00222348.2012.716318
Google Scholar
[20]
V.J. Bruckman, K. Wriessnig, Improved soil carbonate determination by FT-IR and X-ray analysis, Environ. Chem. Lett. 111 (2013) 1-6.
DOI: 10.1007/s10311-012-0380-4
Google Scholar
[21]
D. Zadaka-Amir, N. Bleiman, Y.G. Mishael, Sepiolite as an effective natural porous adsorbent for surface oil-spill, Micropor. Mesopor. Mat. 169 (2013) 153-159.
DOI: 10.1016/j.micromeso.2012.11.002
Google Scholar
[22]
Y. Sun, J. Li, X. Wang, The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques, Geochim. Cosmochim. Ac. 140 (2014) 621-643.
DOI: 10.1016/j.gca.2020.04.029
Google Scholar
[23]
T.V. Bharat, P.V. Sivapullaiah, M.M. Allam, Novel procedure for the estimation of swelling pressures of compacted;bentonites based on diffuse double layer theory, Environ. Earth. Sci. 701 (2013) 303-314.
DOI: 10.1007/s12665-012-2128-7
Google Scholar
[24]
J.K.G. Dhont, W.J. Briels, Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient, Eur. Phys. J. E. 251 (2008) 61-76.
DOI: 10.1140/epje/i2007-10264-6
Google Scholar
[25]
S. Jin, K. Cui, H. Guan, M. Yang, L. Liu, C. Lan, Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics, Appl. Clay Sci. 561 (2012) 1-6.
DOI: 10.1016/j.clay.2011.11.012
Google Scholar