Structure and Surface Properties of Al3+- Modified Sepiolite

Article Preview

Abstract:

Al3+-modified sepiolite was synthesized through hydrothermal treatment of acidified sepiolite using sodium aluminate as a modifier. The structure and surface properties of the modified sepiolite were characterized by XRD, FTIR, NMR, and Zeta potentials. The XRD and FTIR results demonstrated that Al3+ ions were introduced into the sepiolite lattice. 29SiNMR of the sepiolite ore showed that Si atoms had three configurations with chemical shifts of -98.4, -95.2, and -92.5 ppm with the atomic ratio of 1.39: 1.43: 1, which was assigned to the center silicon, edge silicon, and near-edged silicon atoms, respectively. For the as-prepared Al3+-modified sepiolite, the signal intensity of the edge silicon atoms decreased and shifted from -95.2 ppm to -94.5 ppm. Moreover, a new chemical shift of - 87.4ppm belonging to Q1 structure appeared. The ratio of four configurations of silicon atoms was 1.43: 1: 1.53: 1.04. 27AlNMR of Al3+-modified sepiolite showed that Al atoms have two configurations corresponding to the tetra-coordination and octahedral coordination, respectively. The results of NMR revealed that the sepiolite was modified by substitution of Si atoms in the framework and Mg atoms in the interlayer, resulting in a less negative charge on the surface of Al3+-modified sepiolite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1033-1041

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Aygün, O. Demirkiran, T. Utku, B. Mete, S. Urkmez, M. Yilmaz, H. Yaşar, Y. Dikmen, R. Oztürk, Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit, J. Hosp. Infect. 524 (2002).

DOI: 10.1053/jhin.2002.1300

Google Scholar

[2] R. Zhu, J. Zhu, G. Fei, P. Yuan, Regeneration of spent organoclays after the sorption of organic pollutants: A review, J. Environ. Manage. 9011 (2009) 3212-3216.

DOI: 10.1016/j.jenvman.2009.06.015

Google Scholar

[3] H.B. Møller, S.G. Sommer, B.K. Ahring, Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure, J. Environ. Qual. 331 (2004) 27-36.

DOI: 10.2134/jeq2004.2700

Google Scholar

[4] B.M.D.C. Filho, V.M.D. Silva, J.D.O. Silva, A.E.D.H. Machado, A.G. Trovó, Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: Biodegradability and toxicity assessment, J. Environ. Manage. 174 (2016).

DOI: 10.1016/j.jenvman.2016.03.019

Google Scholar

[5] W. Wang, Z. Xu, H. Li, W. Jin, Optimization of coagulation–flocculation process for combined sewer overflow wastewater treatment using response surface methodology, Desalin. Water. Treat. 1230 (2015) 1-9.

DOI: 10.1080/19443994.2015.1067832

Google Scholar

[6] X. Zhang, Z. Li, K. Liu K, L. Jiang, Bioinspired Multifunctional Foam with Self-Cleaning and Oil/Water Separation, Adv. Funct. Mater. 2322 (2013) 2881-2886.

DOI: 10.1002/adfm.201202662

Google Scholar

[7] J.Altmann, D.Rehfeld, K. Träder, A. Sperlich, M. Jekel, Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal, Water. Res. 92 (2016).

DOI: 10.1016/j.watres.2016.01.051

Google Scholar

[8] B. Armağan, M. Turan, M.S. Celik, Equilibrium studies on the adsorption of reactive azo dyes into zeolite, Desalination. 1701 (2004) 33-39.

DOI: 10.1016/j.desal.2004.02.091

Google Scholar

[9] D. Zadaka-Amir, N. Bleiman, Y.G. Mishael, Sepiolite as an effective natural porous adsorbent for surface oil-spill, Micropor. Mesopor. Mat. 169 (2013) 153-159.

DOI: 10.1016/j.micromeso.2012.11.002

Google Scholar

[10] M. Alkan, G. Tekin, H. Namli, FTIR and zeta potential measurements of sepiolite treated with some organosilanes, Micropor. Mesopor. Mat. 84 (2005) 75-83.

DOI: 10.1016/j.micromeso.2005.05.016

Google Scholar

[11] D. Margarita, L. Mar, A. Pilar, J.A. Antonio, B.Julio, R.Eduardo, Microfibrous Chitosan-Sepiolite Nanocomposites, Chem. Mater. 186 (2006) 1602-1610.

Google Scholar

[12] W. Kuang, A.F. Glenn, D. Christian, C. Blanca, Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite, Chem. Mater. 1526 (2003) 4956-4967.

DOI: 10.1021/cm034867i

Google Scholar

[13] N.I. Ilic, S.S. Lazarevic, V.N. Rajakovic-Ognjanovic, L.V. Rajakovic, D. Janackovic, R.D. Petrovic, The sorption of inorganic arsenic on modified sepiolite: Effect of hydrated iron(III)-oxide, J. Serb. Chem. Soc. 797 (2014) 815-828.

DOI: 10.2298/jsc130912017i

Google Scholar

[14] Q. Shen, J. Ouyang, Y. Zhang, H. Yang, Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage, Appl. Clay. Sci. 146 (2017) 14-22.

DOI: 10.1016/j.clay.2017.05.035

Google Scholar

[15] M. Suárez, J. García-Rivas, E. García-Romero, N. Jara, Mineralogical characterisation and surface properties of sepiolite from Polatli (Turkey), Appl. Clay. Sci. 131 (2016) 124-130.

DOI: 10.1016/j.clay.2015.12.032

Google Scholar

[16] Z. Cheng, R. Yang, Y. Wang. Mn/sepiolite as the heterogeneous ozonation catalysts applied to the advanced treatment of regenerated-papermaking wastewater, Water. Sci. Technol. 755 (2017) 1025-1033.

DOI: 10.2166/wst.2016.583

Google Scholar

[17] F. Santiago, A.E. Mucientes, M. Osorio M, F.J. Poblete, Synthesis and swelling behaviour of poly (sodium acrylate)/sepiolite superabsorbent composites and nanocomposites, Polym. Int. 558 (2010) 843-848.

DOI: 10.1002/pi.2016

Google Scholar

[18] H.C. Bidsorkhi, M. Soheilmoghaddam, R.H. Pour, H. Adelnia, Z. Mohamad, Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites, Polym. Test. 378 (2014) 117-122.

DOI: 10.1016/j.polymertesting.2014.05.007

Google Scholar

[19] N. Huang, Z. Chen, H. Liu, J.Wang, Thermal Stability and Degradation Kinetics of Poly(Methyl Methacrylate)/Sepiolite Nanocomposites by Direct Melt Compounding, J. Macromol. Sci. B. 524 (2013) 521-529.

DOI: 10.1080/00222348.2012.716318

Google Scholar

[20] V.J. Bruckman, K. Wriessnig, Improved soil carbonate determination by FT-IR and X-ray analysis, Environ. Chem. Lett. 111 (2013) 1-6.

DOI: 10.1007/s10311-012-0380-4

Google Scholar

[21] D. Zadaka-Amir, N. Bleiman, Y.G. Mishael, Sepiolite as an effective natural porous adsorbent for surface oil-spill, Micropor. Mesopor. Mat. 169 (2013) 153-159.

DOI: 10.1016/j.micromeso.2012.11.002

Google Scholar

[22] Y. Sun, J. Li, X. Wang, The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques, Geochim. Cosmochim. Ac. 140 (2014) 621-643.

DOI: 10.1016/j.gca.2020.04.029

Google Scholar

[23] T.V. Bharat, P.V. Sivapullaiah, M.M. Allam, Novel procedure for the estimation of swelling pressures of compacted;bentonites based on diffuse double layer theory, Environ. Earth. Sci. 701 (2013) 303-314.

DOI: 10.1007/s12665-012-2128-7

Google Scholar

[24] J.K.G. Dhont, W.J. Briels, Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient, Eur. Phys. J. E. 251 (2008) 61-76.

DOI: 10.1140/epje/i2007-10264-6

Google Scholar

[25] S. Jin, K. Cui, H. Guan, M. Yang, L. Liu, C. Lan, Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics, Appl. Clay Sci. 561 (2012) 1-6.

DOI: 10.1016/j.clay.2011.11.012

Google Scholar