[1]
Yanılmaz, M. and A.S. Sarac, A review: effect of conductive polymers on the conductivities of electrospun mats. Textile Research Journal, 2014. 84(12): pp.1325-1342.
DOI: 10.1177/0040517513495943
Google Scholar
[2]
Peng, H., et al., Conducting polymers for electrochemical DNA sensing. Biomaterials, 2009. 30(11): pp.2132-48.
Google Scholar
[3]
Choi, J., et al., Electrospun PEDOT: PSS/PVP nanofibers as the chemiresistor in chemical vapour sensing. Synthetic Metals, 2010. 160(13-14): pp.1415-1421.
DOI: 10.1016/j.synthmet.2010.04.021
Google Scholar
[4]
Tai, Y.L. and Z.G. Yang, Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT: PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015. 31(48): pp.13257-64.
DOI: 10.1021/acs.langmuir.5b03449
Google Scholar
[5]
Zhang, H. -D., et al., Electrospun PEDOT: PSS/PVP Nanofibers for CO Gas Sensing with Quartz Crystal Microbalance Technique. International Journal of Polymer Science, 2016. 2016: pp.1-6.
DOI: 10.1155/2016/3021353
Google Scholar
[6]
Dai, C. -a., et al., Emulsion synthesis of nanoparticles containing PEDOT using conducting polymeric surfactant: Synergy for colloid stability and intercalation doping. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(7): pp.2536-2548.
DOI: 10.1002/pola.22585
Google Scholar
[7]
Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): pp.56-58.
DOI: 10.1038/354056a0
Google Scholar
[8]
Chen, R., et al., Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett, 2013. 13(10): pp.4642-9.
DOI: 10.1021/nl4016683
Google Scholar
[9]
Sun, L., et al., High performance binder-free Sn coated carbon nanotube array anode. Carbon, 2015. 82: pp.282-287.
DOI: 10.1016/j.carbon.2014.10.072
Google Scholar
[10]
Garrido, J.M., et al., beta-Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2017. 52(4): pp.313-319.
Google Scholar
[11]
Pokhrel, L.R., et al., Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: A review. Sci Total Environ, 2017. 574: pp.1379-1388.
DOI: 10.1016/j.scitotenv.2016.08.055
Google Scholar
[12]
Su, L., F. Gao, and L. Mao, Electrochemical Properties of Carbon Nanotube (CNT) Film Electrodes Prepared by Controllable Adsorption of CNTs onto an Alkanethiol Monolayer Self-Assembled on Gold Electrodes. American Chemical Society, 2006. 78: pp.2651-2657.
DOI: 10.1021/ac051997x
Google Scholar
[13]
Hu, C.G., et al., Investigation on electrochemical properties of carbon nanotubes. Diamond and Related Materials, 2003. 12(8): pp.1295-1299.
Google Scholar
[14]
Ebbesen, T.W., et al., Decoration of Carbon Nanotubes. ADVANCED MATERIALS, 1996. 8(2).
Google Scholar
[15]
Agarwal, S., A. Greiner, and J.H. Wendorff, Functional materials by electrospinning of polymers. Progress in Polymer Science, 2013. 38(6): pp.963-991.
DOI: 10.1016/j.progpolymsci.2013.02.001
Google Scholar
[16]
Vasita, R. and D.S. Katti, Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine, 2006. 1(1): pp.15-30.
Google Scholar
[17]
Sundarrajan, S., et al., Electrospun Nanofibers for Air Filtration Applications. Procedia Engineering, 2014. 75: pp.159-163.
DOI: 10.1016/j.proeng.2013.11.034
Google Scholar
[18]
Haider, A., S. Haider, and I. -K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, (2015).
DOI: 10.1016/j.arabjc.2015.11.015
Google Scholar
[19]
Ramezani Akhmareh, A., et al., A Tagless Indoor Localization System Based on Capacitive Sensing Technology. Sensors (Basel), 2016. 16(9).
DOI: 10.3390/s16091448
Google Scholar
[20]
Javed Iqbal, A.A., Osama Bin Tariq, Mihai Teodor Lazarescu, Luciano Lavagno, A Contactless Sensor for Human Body. IEEE Instrumentation and Measurement Society, (2017).
DOI: 10.1109/sas.2017.7894102
Google Scholar
[21]
Arshad, A., et al., An Activity Monitoring System for Senior Citizens. IEEE Instrumentation and Measurement Society, 2016: pp.1-6.
Google Scholar
[22]
Braun, A., et al., Capacitive proximity sensing in smart environments. Journal of Ambient Intelligence and Smart Environments, 2015. 7(4): pp.483-510.
DOI: 10.3233/ais-150324
Google Scholar
[23]
Morgan, H., R. Pethigt, and G.T. Stevens, A proton-injecting technique for the measurement of hydration-dependent protonic conductivity. Journal of Physics E: Scientific Instruments, 1985. 19(80).
DOI: 10.1088/0022-3735/19/1/016
Google Scholar
[24]
Stolzing, A., et al., Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev, 2008. 129(3): pp.163-73.
DOI: 10.1016/j.mad.2007.12.002
Google Scholar
[25]
Mahdi, A.E. and L. Faggion, New displacement current sensor for contactless detection of bio-activity related signals. Sensors and Actuators A: Physical, 2015. 222: pp.176-183.
DOI: 10.1016/j.sna.2014.11.019
Google Scholar
[26]
K., D., et al., Complex Permittivity of Human Skin In Vivo in the Frequency Band 26. 5-60 GH2. Proceedings of IEEE Antennas and Propagation Symposium, 2000: pp.1100-1103.
Google Scholar
[27]
Grantis, J.P., et al., In vivo dielectric properties of human skin from 50 MHz to 2. 0 GHz. Physics in Medicine & Biology, 1988. 33(607).
Google Scholar
[28]
Hey-Shiptont, G.L., P.A. Matthews, and J. McStay, The complex permittivity of human tissue at microwave frequencies. Physics in Medicine & Biology, 1982. 27(1067).
DOI: 10.1088/0031-9155/27/8/008
Google Scholar