Fabrication of Polymer Nanofiber-Conducting Polymer Fabric and Noncontact Motion Sensing Platform

Article Preview

Abstract:

Conductive polymer-electrospun polymer nanofiber network was combined to host iron oxide nanoparticles providing micrometer thick sensing interface. The sensor has fabricated as free-standing fabric exhibiting 10 to 100 KOhm base resistivity upon bias applied. The moving object has been sensed through the electrostatic interactions between fibers and object. The sensing range has been found to be 1-5 cm above the surface of fabric. By the controlled combination of conductive polymers electrospun polymer nanofibers effective device miniaturization has been provided without loss of performance. The noncontact motion sensor platform has unique flexibility and light weight holding a potential for wearable sensor technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-212

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yanılmaz, M. and A.S. Sarac, A review: effect of conductive polymers on the conductivities of electrospun mats. Textile Research Journal, 2014. 84(12): pp.1325-1342.

DOI: 10.1177/0040517513495943

Google Scholar

[2] Peng, H., et al., Conducting polymers for electrochemical DNA sensing. Biomaterials, 2009. 30(11): pp.2132-48.

Google Scholar

[3] Choi, J., et al., Electrospun PEDOT: PSS/PVP nanofibers as the chemiresistor in chemical vapour sensing. Synthetic Metals, 2010. 160(13-14): pp.1415-1421.

DOI: 10.1016/j.synthmet.2010.04.021

Google Scholar

[4] Tai, Y.L. and Z.G. Yang, Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT: PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015. 31(48): pp.13257-64.

DOI: 10.1021/acs.langmuir.5b03449

Google Scholar

[5] Zhang, H. -D., et al., Electrospun PEDOT: PSS/PVP Nanofibers for CO Gas Sensing with Quartz Crystal Microbalance Technique. International Journal of Polymer Science, 2016. 2016: pp.1-6.

DOI: 10.1155/2016/3021353

Google Scholar

[6] Dai, C. -a., et al., Emulsion synthesis of nanoparticles containing PEDOT using conducting polymeric surfactant: Synergy for colloid stability and intercalation doping. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(7): pp.2536-2548.

DOI: 10.1002/pola.22585

Google Scholar

[7] Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): pp.56-58.

DOI: 10.1038/354056a0

Google Scholar

[8] Chen, R., et al., Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett, 2013. 13(10): pp.4642-9.

DOI: 10.1021/nl4016683

Google Scholar

[9] Sun, L., et al., High performance binder-free Sn coated carbon nanotube array anode. Carbon, 2015. 82: pp.282-287.

DOI: 10.1016/j.carbon.2014.10.072

Google Scholar

[10] Garrido, J.M., et al., beta-Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2017. 52(4): pp.313-319.

Google Scholar

[11] Pokhrel, L.R., et al., Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: A review. Sci Total Environ, 2017. 574: pp.1379-1388.

DOI: 10.1016/j.scitotenv.2016.08.055

Google Scholar

[12] Su, L., F. Gao, and L. Mao, Electrochemical Properties of Carbon Nanotube (CNT) Film Electrodes Prepared by Controllable Adsorption of CNTs onto an Alkanethiol Monolayer Self-Assembled on Gold Electrodes. American Chemical Society, 2006. 78: pp.2651-2657.

DOI: 10.1021/ac051997x

Google Scholar

[13] Hu, C.G., et al., Investigation on electrochemical properties of carbon nanotubes. Diamond and Related Materials, 2003. 12(8): pp.1295-1299.

Google Scholar

[14] Ebbesen, T.W., et al., Decoration of Carbon Nanotubes. ADVANCED MATERIALS, 1996. 8(2).

Google Scholar

[15] Agarwal, S., A. Greiner, and J.H. Wendorff, Functional materials by electrospinning of polymers. Progress in Polymer Science, 2013. 38(6): pp.963-991.

DOI: 10.1016/j.progpolymsci.2013.02.001

Google Scholar

[16] Vasita, R. and D.S. Katti, Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine, 2006. 1(1): pp.15-30.

Google Scholar

[17] Sundarrajan, S., et al., Electrospun Nanofibers for Air Filtration Applications. Procedia Engineering, 2014. 75: pp.159-163.

DOI: 10.1016/j.proeng.2013.11.034

Google Scholar

[18] Haider, A., S. Haider, and I. -K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, (2015).

DOI: 10.1016/j.arabjc.2015.11.015

Google Scholar

[19] Ramezani Akhmareh, A., et al., A Tagless Indoor Localization System Based on Capacitive Sensing Technology. Sensors (Basel), 2016. 16(9).

DOI: 10.3390/s16091448

Google Scholar

[20] Javed Iqbal, A.A., Osama Bin Tariq, Mihai Teodor Lazarescu, Luciano Lavagno, A Contactless Sensor for Human Body. IEEE Instrumentation and Measurement Society, (2017).

DOI: 10.1109/sas.2017.7894102

Google Scholar

[21] Arshad, A., et al., An Activity Monitoring System for Senior Citizens. IEEE Instrumentation and Measurement Society, 2016: pp.1-6.

Google Scholar

[22] Braun, A., et al., Capacitive proximity sensing in smart environments. Journal of Ambient Intelligence and Smart Environments, 2015. 7(4): pp.483-510.

DOI: 10.3233/ais-150324

Google Scholar

[23] Morgan, H., R. Pethigt, and G.T. Stevens, A proton-injecting technique for the measurement of hydration-dependent protonic conductivity. Journal of Physics E: Scientific Instruments, 1985. 19(80).

DOI: 10.1088/0022-3735/19/1/016

Google Scholar

[24] Stolzing, A., et al., Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev, 2008. 129(3): pp.163-73.

DOI: 10.1016/j.mad.2007.12.002

Google Scholar

[25] Mahdi, A.E. and L. Faggion, New displacement current sensor for contactless detection of bio-activity related signals. Sensors and Actuators A: Physical, 2015. 222: pp.176-183.

DOI: 10.1016/j.sna.2014.11.019

Google Scholar

[26] K., D., et al., Complex Permittivity of Human Skin In Vivo in the Frequency Band 26. 5-60 GH2. Proceedings of IEEE Antennas and Propagation Symposium, 2000: pp.1100-1103.

Google Scholar

[27] Grantis, J.P., et al., In vivo dielectric properties of human skin from 50 MHz to 2. 0 GHz. Physics in Medicine & Biology, 1988. 33(607).

Google Scholar

[28] Hey-Shiptont, G.L., P.A. Matthews, and J. McStay, The complex permittivity of human tissue at microwave frequencies. Physics in Medicine & Biology, 1982. 27(1067).

DOI: 10.1088/0031-9155/27/8/008

Google Scholar