Effect of La3+ Substitution on the Structural and Magnetic Properties of Mn-Zn Ferrite Prepared by Sol-Gel Auto-Combustion Method

Article Preview

Abstract:

Spinel ferrite with the chemical formula of Mn0.5Zn0.5LaxFe2-xO4 (x = 0.02, 0.04, 0.06, 0.08, 0.10) were prepared by a sol-gel auto-combustion method. The effect of the rare-earth substitution on the microstructural properties of the synthesized powders were investigated through X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while for the magnetic properties, vibrating sample magnetometer (VSM) measurements were made. XRD patterns revealed characteristic peaks corresponding to spinel Mn-Zn ferrite structures with accompanying secondary phases, such as Fe2O3 and LaFeO3. The initial addition of La3+ into the spinel ferrite system resulted in an initial spike of the lattice parameter and crystallite size before proceeding to decrease as the rare-earth content continues to decrease. FESEM micrographs reveals agglomerated particles with considerable grain size distribution. The magnetic properties, especially the saturation magnetization, Ms, was found to decrease with each increase in La3+ substitution. The research findings revealed the critical influence of the La3+ substitution towards the overall structural and magnetic properties of the Mn-Zn ferrite samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-95

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Hu, H.-b. Yang, D.-a. Pan, H. Wang, J.-j. Tian, S.-g. Zhang, X.-f. Wang, A.A. Volinsky, Heat treatment effects on microstructure and magnetic properties of Mn–Zn ferrite powders, Journal of Magnetism and Magnetic Materials, 322 (2010) 173-177.

DOI: 10.1016/j.jmmm.2009.09.002

Google Scholar

[2] V. Šepelák, P. Heitjans, K. Becker, Nanoscale spinel ferrites prepared by mechanochemical route: thermal stability and size dependent magnetic properties, Journal of Thermal Analysis and Calorimetry, 90 (2007) 93-97.

DOI: 10.1007/s10973-007-8481-1

Google Scholar

[3] C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of nickel on the electrical properties of nanostructured MnZn ferrite, Journal of alloys and Compounds, 498 (2010) 203-206.

DOI: 10.1016/j.jallcom.2010.03.160

Google Scholar

[4] Y. Meng, Z. Liu, H. Dai, H. Yu, D. Zeng, S. Shukla, R.V. Ramanujan, Structure and magnetic properties of Mn (Zn) Fe 2− x RE x O 4 ferrite nano-powders synthesized by co-precipitation and refluxing method, Powder Technology, 229 (2012) 270-275.

DOI: 10.1016/j.powtec.2012.06.050

Google Scholar

[5] E. Pervaiz, I. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite, in: Journal of Physics: Conference Series, IOP Publishing, 2013, p.012015.

DOI: 10.1088/1742-6596/439/1/012015

Google Scholar

[6] S. Xavier, S. Thankachan, B.P. Jacob, E. Mohammed, Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite, Journal of Nanoscience, 2013 (2013).

DOI: 10.1155/2013/524380

Google Scholar

[7] M. Satalkar, S. Kane, On structural studies and cation distribution of La added Zn-Ni-Mg-Cu spinel nano ferrite, in: Journal of Physics: Conference Series, IOP Publishing, 2016, p.012047.

DOI: 10.1088/1742-6596/755/1/012047

Google Scholar

[8] R. Gimenes, M. Baldissera, M. Da Silva, C. Da Silveira, D. Soares, L.A. Perazolli, M. da Silva, M. Zaghete, Structural and magnetic characterization of Mn x Zn 1− x Fe 2 O 4 (x= 0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method, Ceramics international, 38 (2012).

DOI: 10.1016/j.ceramint.2011.07.066

Google Scholar

[9] A. D'souza, M. Deepak Kumar, M. Chatim, V. Naik, P.P. Naik, R. Tangsali, Effect of Rare-Earth Doping on Magnetic and Electrical Transport Properties of Nanoparticle Mn–Zn Ferrite, Advanced Science Letters, 22 (2016) 773-779.

DOI: 10.1166/asl.2016.6966

Google Scholar

[10] A. Gaber, M. Abdel-Rahim, A. Abdel-Latief, M.N. Abdel-Salam, Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method, Int J Electrochem Sci, 9 (2014) 81-95.

DOI: 10.24297/jac.v12i11.4831

Google Scholar

[11] M.J. Nasr Isfahani, M. Myndyk, D. Menzel, A. Feldhoff, J. Amighian, V. Šepelák, Magnetic properties of nanostructured MnZn ferrite, Journal of Magnetism and Magnetic Materials, 321 (2009) 152-156.

DOI: 10.1016/j.jmmm.2008.08.054

Google Scholar