Experimental Investigations of Bulge Formation for Burnishing on Plain Surfaces

Article Preview

Abstract:

Burnishing as a forming finishing process enables the production of precise and mechanical compressed surfaces. The forming operation can be easily integrated into cutting processes due to its kinematic similarities. Through this integration it was possible to create highly efficient process chains for the machining of rotational symmetrical parts. The formed surface qualities are also interesting for prismatic geometries, but the adaptation of this force controlled process is challenging, because of its multiaxial characteristics. A main limiting factor for burnishing on plain surfaces is the formation of a burnishing bulge on the edges of the burnished area. Several investigations of the process on plain surfaces where done to analyse the bulge formation characteristics of the aluminium EN AW-2007 material. Experiments of different single burnished paths and burnished areas with the subsequent 3D capturing of the created surfaces were done. The investigations show, that the deformation is highly dependent on the applied burnishing force and the burnishing feed. The length and width of the burnished area does not have an influence on the bulge formation.

You have full access to the following eBook

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

March 2018

Export:

Share:

Citation:

* - Corresponding Author

[1] F. Klocke and W. König, Fertigungsverfahren 4, vol. 4, no. 9. Springer Berlin Heidelberg, (2006).

Google Scholar

[2] H. König, Glattwalzen ., 1. -3. Ts. Stuttgart: Dt. Fachzeitschr. - und Fachbuch-Verl., (1954).

Google Scholar

[3] U. Virkus, Oberflächengestalltung durch die Verfahrensfolge Spanen - Glattwalzen unter stofflichen, geometrischen und kinematischen Aspekten, Technissche Universität Dresden, (2001).

Google Scholar

[4] R. Avilés, J. Albizuri, A. Rodríguez, and L. N. López de Lacalle, Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel, Int. J. Fatigue, vol. 55, p.230–244, Oct. (2013).

DOI: 10.1016/j.ijfatigue.2013.06.024

Google Scholar

[5] P. S. Prevey and J. T. Cammett, The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6, Int. J. Fatigue, vol. 26, no. 9, p.975–982, Sep. (2004).

DOI: 10.1016/j.ijfatigue.2004.01.010

Google Scholar

[6] R. Neugebauer und J. Gentzen, Anwendungspotenziale der Verfahren Schleifen , Superfinishen und Glattwalzen, Jahrb. Schleifen, Honen, Läppen und Polier., S. 89–103, (2004).

Google Scholar

[7] K. Malle, Glattwalzen: Einfach zu Top-Ergebnissen, WB Werkstatt und Betr., p.61–62, (2005).

Google Scholar

[8] K. Röttger and S. Fricke, Beim Glatt- und Festwalzen liegt der Unterschied im Ergebnis, MaschinenMarkt, vol. 41, (2012).

Google Scholar

[9] H. Leiser and G. Schippers, Glattwalzen ebener Flächen. Karl-Marx-Stadt, (1963).

Google Scholar

[10] L. N. López de Lacalle, A. Rodríguez, A. Lamikiz, A. Celaya, and R. Alberdi, Five-Axis Machining and Burnishing of Complex Parts for the Improvement of Surface Roughness, Mater. Manuf. Process., vol. 26, no. 8, p.997–1003, Aug. (2011).

DOI: 10.1080/10426914.2010.529589

Google Scholar

[11] V. P. Kuznetsov u. a., Finite element simulation of nanostructuring burnishing, Phys. Mesomech., Bd. 16, Nr. 1, S. 62–72, Jan. (2013).

Google Scholar

[12] A. M. Hassan und A. S. Al-Bsharat, Influence of burnishing process on surface roughness, hardness, and microstructure of some non-ferrous metals, Wear, Bd. 199, Nr. 1, S. 1–8, (1996).

DOI: 10.1016/0043-1648(95)06847-3

Google Scholar

[13] A. C. Lyons und M. Némat, An Investigation of the Surface Topography of Ball Burnished Mild Steel and Aluminium, Int. J., S. 469–473, (2000).

DOI: 10.1007/s001700070054

Google Scholar